Коллектив Авторов - Цифровой журнал «Компьютерра» № 64
- Категория: Компьютеры и Интернет / Прочая околокомпьтерная литература
- Автор: Коллектив Авторов
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 17
- Добавлено: 2019-05-28 15:57:50
Коллектив Авторов - Цифровой журнал «Компьютерра» № 64 краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Коллектив Авторов - Цифровой журнал «Компьютерра» № 64» бесплатно полную версию:ОглавлениеСтатьиКосмический лифт и космические сложности Автор: Алла АршиноваНПП: стратегия есть, ждём тактики Автор: Евгений КрестниковИнтервьюАлексей Беклемишев (ИЯФ СО РАН) о термояде Автор: Алла АршиноваТерралабЭлектронные ридеры: E-Ink или TFT? Автор: Марина РожковаSPB Shell 3D: альтернативный интерфейс для Google Android Автор: Алексей Талан, Mobi.ruКолумнистыВасилий Щепетнёв: Земельный вопрос Автор: Василий ЩепетневКивино гнездо: Нечестное меньшинство Автор: Киви БердПредок HAL 9000: компьютер первого космического корабля Автор: Евгений Лебеденко, MobiКафедра Ваннаха: Имена россиян Автор: Ваннах МихаилВасилий Щепетнёв: Деарифмометризация Автор: Василий ЩепетневДмитрий Шабанов: «Экология» и лжецы Автор: Дмитрий ШабановКафедра Ваннаха: Национально-свободный софт Автор: Ваннах МихаилВасилий Щепетнёв: Утрата шиншиллия Автор: Василий ЩепетневIDF 2011: планшеты и нетбуки станут мощнее и экономичнее Автор: Олег НечайГолубятня-ОнлайнГолубятня: Sade Автор: Сергей ГолубицкийГолубятня: Пратьяхара Автор: Сергей Голубицкий
Коллектив Авторов - Цифровой журнал «Компьютерра» № 64 читать онлайн бесплатно
Компьютерра
11.04.2011 - 17.04.2011
Статьи
Космический лифт и космические сложности
Алла Аршинова
Опубликовано 13 апреля 2011 года
Традиционный способ доставки грузов на орбиту очень дорог. Например, перевозка одного килограмма на шаттле, по оценке НАСА, стоит примерно 22 тысячи долларов. На российской одноразовой ракете-носителе «Протон» стоимость ниже: по некоторым оценкам, она составляет от одной до четырёх с половиной тысяч за килограмм. Но и это тоже недёшево.
Освоение космоса тормозит именно дороговизна ракетных стартов. Позволить их себе могут лишь крупные государства и считанные мегакорпорации, нашедшие способ извлекать из присутствия на орбите прибыль. Появление другого, более доступного способа поменяло бы всё. Но есть ли такой способ?
Одна из самых любопытных идей, отвечающих на этот вопрос, — космический лифт. Она проста: конструкция, как и у обычного лифта, состоит из основания, троса, подъёмника и противовеса. Разница лишь в масштабах. Основание космического лифта находится на поверхности Земли, от него вверх тянется трос, по которому движется подъёмник с грузами или пассажирами, а на орбитальной станции расположен противовес, благодаря которому центр масс лифта находится над уровнем геостационарной орбиты.
Воображаемый космический лифт, изображение NASAГлавное преимущество космического лифта в том, что он экономичен. По расчётам специалистов из НАСА, доставка килограмма груза на космическом лифте обойдётся всего в несколько долларов.
Откуда такая экономия? Более 90 процентов веса ракет составляют топливо, расходуемые компоненты и сама «оболочка» ракеты. Лифт позволяет избежать львиной доли ненужных расходов. Если кроме перевозки грузов лифт можно будет использовать и для перемещения людей, билет на орбиту будет стоить не дороже билета на авиаперелёт.
Впрочем, не всё так просто. Рассуждать об экономике рано — сначала нужно решить инженерные проблемы. Впрочем, судя по тому, что идея привлекает не только фантастов, но и серьёзные организации, вроде NASA, за этим дело не станет.
С чего всё начиналось?Считается, что первым к идее космического лифта обратился советский учёный Константин Циолковский. В 1895 году он предположил, что можно построить «Небесный замок» на геостационарной земной орбите, присоединённый к опоре на земле. Вдохновила же http://science.nasa.gov/science-news/science-at-nasa/2000/ast07sep_1/ учёного Эйфелева башня. Ему пришло в голову, что если вытянуть башню до орбиты, то получится что-то вроде лестницы в небо.
Первый подробный проект космического лифта принадлежит ленинградскому инженеру Юрию Арцупанову. В 1960 году он написал статью "В Космос — на электровозе": "Возьмите кусочек шпагата и привяжите к нему камень. Начните вращать его. Под влиянием центробежной силы камень будет стремиться оторваться и туго натянет верёвку. Ну, а что будет, если такую «верёвку» укрепить на земном экваторе и, протянув далеко в Космос, «подвесить» на ней соответствующий груз?"
Арцупанов предположил, что если трос сделать достаточно длинным, то на определённом расстоянии центробежная сила станет растягивать его, не давая грузу упасть на землю. Так будет происходить потому, что сила притяжения Земли уменьшается пропорционально квадрату расстояния, а центробежная сила растёт с увеличением расстояния.
Как инженер он понимал, что главная проблема — это невероятно длинный трос, требующийся для космического лифта. Арцупанов предложил изготовить его из нескольких нитей, связанных между собой поперечными жгутами. Он считал, что это поможет защитить трос от внешних воздействий, например метеоров.
Верёвки, из которых будет состоять трос, должны быть разной толщины: снизу, у Земли, тоньше, а чем выше, тем толще. Максимальная толщина должна быть в точке, где центробежная сила уравновешивает силу тяжести. Это нужно для того, чтобы растягивающее напряжение по всей длине было одинаковым. А в верёвки, из которых будет состоять трос, нужно вплести металлические провода, чтобы осуществлять электроснабжение.
Материал для тросаДаже самые прочные из известных материалов, такие, как сталь, или алмазная нить, не подходят для троса космического лифта. Главная надежда в этом смысле на углеродные нанотрубки. За счёт своей структуры (они могут быть однослойные и многослойные, прямые и спиральные) нанотрубки имеют необычные свойства, и самое примечательное из них — это прочность. Помимо того что они обладают невероятно большой прочностью на растяжение и изгиб, это ещё и неплотный материал, а значит, весит он совсем немного, что является его явным преимуществом. Отношение предела прочности к весу у нанотрубок достигает 74000 кНм/кг. По этому показателю они превосходят сталь в 117 раз, а кевлар — в 30 раз (подробнее об этом можно прочитать в статье «A New Lower Limit for the Ultimate Breaking Strain of Carbon Nanotubes»).
Но промышленное применение нанотрубок пока невозможно из-за ряда проблем. Первая причина — наука пока не нашла экономически приемлемого способа выращивать нанотрубки в нужных количествах. Также пока невозможно создавать углеродные нанотрубки неограниченной длины с однородными физическими свойствами, то есть без структурных дефектов (хотя успешные попытки и делаются).
Несмотря на огромные перспективы этого материала, пока оценки специалистов относительно применения нанотрубок в проекте космического лифта пессимистичные. Итальянский учёный Никола Пуньо сделал вычисления, согласно которым неизбежные дефекты нанотрубок сделают их недостаточно прочными для космического лифта (за подробностями стоит обратиться к его докладу.)
Учёный рассчитал, что предел прочности троса должен составлять 62 гигапаскаля. Для сравнения: 1 ГПа — это 10 тонн на 1 см2. Предел прочности отдельной нанотрубки, по некоторым данным, составляет 100 гигапаскалей. Но если сплести из них трос, то за счёт дефектов он существенно снизится. Если это действительно так, то выходит, что современный уровень развития материаловедения не позволяет построить космический лифт.
Проекты космического лифтаСуществует множество проектов космического лифта, и все они мало отличаются от того, что предлагал Арцупанов, но теперь учёные исходят из того, что материалы из нанотрубок станут доступны. Вот, например, рецепт космического лифта по-индийски. Заместитель начальника индийского космического центра VSSC Сентхил Кумар на одном из научных конгрессов рассказал о проекте лифта, в основании которого будет высотное здание. К нему прикрепят трос из композитного волокна на основе углеродных нанотрубок. На втором конце будет расположен противовес, уходящий за пределы геостационарной орбиты. Кабину лифта разделят на две части: отсек для грузов и помещение для людей. Индийцы уже даже рассчитали скорость подъёмника — 200 км в час. Достигнет своей цели кабина за восемь дней. Правда, господин Кумар не пояснил, как его соотечественники предлагают решать проблему радиации, молний, ветров, метеоров и космического мусора.
Смелее всех фантазии оказались, пожалуй, у канадцев. Из всех предложенных проектов у них получился самый необычный вариант. Они решили, что можно сделать лифт в виде огромной надувной башни. Башню канадцы предлагают собирать из модулей. Модуль в данном случае означает три скреплённые между собой трубы двухметрового диаметра, надутые гелием или другим лёгким газом. Между трубами предполагается вертикальный «проход», по которому будет двигаться кабина. Чтобы не быть голословными, канадцы спроектировали модель лифта.
Пока им удалось построить башню высотой 15 километров, но как «дотянуть» её до низкой околоземной орбиты, остаётся открытым вопросом. Проблему углеродных нанотрубок учёные вообще обошли стороной и предложили плести трос из уже имеющихся материалов. Статью об этом можно прочитать в журнале Acta Astronautica.
Но больше всех идея космического лифта интересует американцев. Например, Лос-Аламосская национальная лаборатория (та самая, где была сделана первая атомная бомба) активно занимается этим вопросом. Её сотрудники предложили свой вариант космического лифта, правда, принципиально он ничем не отличается от большинства других. На экваторе предлагается расположить океанскую платформу. Трос сделают в виде ленты из углеродных нанотрубок. Подавать энергию к лифтовой кабине планируется с помощью мощных лазеров, которые с Земли будут «подсвечивать» панели, преобразующие энергию обратно в электрический ток.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.