Занимательная астрономия - Яков Исидорович Перельман
- Категория: Научные и научно-популярные книги / Науки о космосе
- Автор: Яков Исидорович Перельман
- Страниц: 50
- Добавлено: 2024-01-20 21:12:09
Занимательная астрономия - Яков Исидорович Перельман краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Занимательная астрономия - Яков Исидорович Перельман» бесплатно полную версию:В книге «Занимательная астрономия» Яков Перельман рассказывает о космическом пространстве, о действующих в нем законах и научных открытиях прошлых веков. Многие знакомые и привычные явления предстают здесь с новой и неожиданной стороны, раскрывая свой подлинный смысл. Как и все прочие книги Якова Перельмана, «Занимательная астрономия» написана весьма увлекательно и рассчитана на самый широкий круг читателей.
Создан из PDF — могут встречаться опечатки.
Занимательная астрономия - Яков Исидорович Перельман читать онлайн бесплатно
Яков Перельман
Занимательная астрономия
На морской карте кратчайший путь от мыса Доброй Надежды до южной оконечности Австралии обозначается не прямой линией («локсодромией»), а кривой («ортодромией»)
Рис. 2. Кажется невероятным, что криволинейный путь, соединяющий на морской карте Йокогаму с Панамским каналом, короче прямой линии, проведенной между теми же точками
Моряки пользуются картами, начерченными по способу старинного голландского картографа и математика XVI в. Меркатора. Способ этот называется «меркаторской проекцией». Узнать морскую карту легко по ее прямоугольной сетке: меридианы изображены на ней в виде ряда параллельных прямых линий; круги широты — тоже прямыми линиями, перпендикулярными к первым (см. рис. 5).
Вообразите теперь, что требуется найти кратчайший путь от одного океанского порта до другого, лежащего на той же параллели. На океане все пути доступны, и осуществить там путешествие по кратчайшему пути всегда возможно, если знать, как он пролегает. В нашем случае естественно думать, что кратчайший путь идет вдоль той параллели, на которой лежат оба порта: ведь на карте — это прямая линия, а что может быть короче прямого пути! Но мы ошибаемся: путь по параллели вовсе не кратчайший.
В самом деле: на поверхности шара кратчайшее расстояние между двумя точками есть соединяющая их дуга большого круга[1]. Но круг параллели — малый круг. Дуга большого круга менее искривлена, чем дуга любого малого круга, проведенного через те же две точки: большему радиусу отвечает меньшая кривизна. Натяните на глобусе нить между нашими двумя точками (см. рис. 3); вы убедитесь, что она вовсе не ляжет вдоль параллели. Натянутая нить — бесспорный указатель кратчайшего пути, а если она на глобусе не совпадает с параллелью, то и на морской карте кратчайший путь не обозначается прямой линией: вспомним, что круги параллелей изображаются на такой карте прямыми линиями, всякая же линия, не совпадающая с прямой, есть кривая.
Рис. 3. Простой способ отыскания действительно кратчайшего пути между двумя пунктами: надо на глобусе натянуть нитку между этими пунктами
После сказанного становится понятным, почему кратчайший путь на морской карте изображается не прямой, а кривой линией.
Рассказывают, что при выборе направления для Николаевской (ныне Октябрьской) железной дороги велись нескончаемые споры о том, по какому пути ее проложить. Конец спорам положило вмешательство царя Николая I, который решил задачу буквально «прямолинейно»: соединил Петербург с Москвой по линейке.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.