Михаил Адаменко - В помощь радиолюбителю. Выпуск 10
- Категория: Научные и научно-популярные книги / Радиотехника
- Автор: Михаил Адаменко
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 8
- Добавлено: 2019-02-05 12:34:28
Михаил Адаменко - В помощь радиолюбителю. Выпуск 10 краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Михаил Адаменко - В помощь радиолюбителю. Выпуск 10» бесплатно полную версию:В этой книге приведены краткие описания и принципиальные схемы конструкций, ранее опубликованные в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.
Михаил Адаменко - В помощь радиолюбителю. Выпуск 10 читать онлайн бесплатно
Составитель: Адаменко Михаил Васильевич
«В помощь радиолюбителю»
Выпуск.10
Глава 1
ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
1.1. Тестер для определения полярности элементов питания [1]
Предлагаемое устройство, без сомнения, принадлежит к самым простым конструкциям, поэтому его может собрать любой желающий. С помощью данного тестера буквально за несколько секунд можно определить полярность батареи и аккумулятора, а также сетевого источника питания, имеющего выходное напряжение от 3 В до 30 В. При этом нижний предел указанного диапазона определяется падением напряжения на соответствующих элементах: 2 х 0,6 В — на диодах и примерно 1,5–1,8 В — на соответствующем светодиоде. Верхний предел диапазона ограничен максимальным рабочим током светодиодов. При напряжении 30 В ток ограничивается сопротивлением резистора R1 и составляет менее 30 мА, что кратковременно допустимо для большинства имеющихся в продаже светодиодов.
Принципиальная схема тестера полярности приведена на рис. 1.
Рис. 1. Принципиальная схема тестера полярности элементов питания
Проверяемый источник питания подключается к клеммам «+» и «-». Если полярность источника совпадает с обозначениями клемм, то ток будет протекать по цепи через диод D1, светодиод LD1, резистор R1 и диод D3. При этом свечение зеленого светодиода LD1 сигнализирует, что обозначения контактов устройства и полярность проверяемого источника совпадают. В том случае, если полярность источника не совпадает с обозначениями клемм, ток будет протекать по цепи через диод D4, светодиод LD2, резистор R1 и диод D2. При этом свечение красного светодиода LD2 сигнализирует об ошибочном подключении источника напряжения.
Детали тестера располагаются на плате размерами 26 х 16 мм, изготовленной из одностороннего фольгированного гетинакса или текстолита. Схема печатной платы и расположение элементов на ней приведены на рис. 2.
Рис. 2. Печатная плата (а) и расположение элементов (б) тестера полярности элементов питания
Для подключения к устройству тестируемого источника можно воспользоваться контактными зажимами или измерительными щупами от обычного мультиметра. При этом для контакта «+» рекомендуется использовать щуп красного цвета, а для контакта «-» — щуп черного цвета.
После проверки правильности монтажа и практической работоспособности тестера печатную плату с расположенными на ней элементами можно разместить в любом подходящем корпусе.
1.2. Испытатель элементов питания [2]
На рис. 3 изображена принципиальная схема простого устройства, с помощью которого можно проверить состояние батареи или элемента питания посредством сравнения его напряжения без нагрузки и при подключении нагрузки.
Испытываемая батарея Вх подключается к клеммам J1 и J2. Напряжение батареи измеряется любым цифровым мультиметром (ЦММ), который подключается к клеммам J3 и J4.
В состав устройства входят нагрузочные резисторы R1-R5, выбор одного из которых осуществляется с помощью переключателя S1. При проверке батареи в режиме нагрузки выбранный резистор к тестируемому элементу кратковременно подключается при нажатии кнопки S2.
Рис. 3. Принципиальная схема испытателя элементов питания
Резистор R1 используется в качестве нагрузки при проверке малогабаритных элементов питания, имеющих напряжение от 1,5 В до 3 В при рабочем токе до 2 мА. Резистор R2 исполняет роль нагрузки при тестировании пальчиковых батарей и аккумуляторов типов R6 и R16, имеющих напряжение 1,5 В при рабочем токе до 180 мА. В качестве нагрузки для батарей типа «Крона» и им аналогичных на напряжение 9 В при токе до около 13 мА применяется резистор R3. Резистор R4 используется в качестве нагрузки при проверке батарей, состоящих из нескольких пальчиковых элементов, имеющих напряжение от 6 В до 9 В при рабочем токе до 190 мА.
Нагрузкой для батарей напряжением от 9 В до 12 В емкостью 1 Ач при рабочем токе до 444 мА служит резистор R5.
1.3. Простой измеритель индуктивности [3]
Предлагаемое устройство представляет собой один из простейших приборов с цифровым дисплеем, предназначенный для измерения индуктивности в трех диапазонах: 4-199,9 мкГ; 40-1999 мкГ и 0,4-19,99 мГ. При этом погрешность измерений в диапазоне от 40 до 1500 составляет около 5 %, при значениях выше 1500 ошибка не превышает 10 %, а при значениях менее 40 измеренное значение не является достоверным.
Рис. 4. Принципиальная схема простого измерителя индуктивности
Проверяемая катушка, имеющая индуктивность Ц., подключается к клеммам J3 и J4. На эти клеммы с выхода мультивибратора, выполненного на микросхеме IO1 (4047), через резистор R5 подается периодическая последовательность прямоугольных импульсов. Если бы к исследуемой катушке через диод D2 не был подключен конденсатор С5, а импульсы, формируемые мультивибратором, имели идеальную прямоугольную форму, то при поступлении фронта положительного импульса на катушке формировался бы положительный иглообразный импульс. Этот импульс имел бы амплитуду, равную амплитуде входного импульса, а также сравнительно крутой фронт и экспоненциальный спад. Временная константа экспоненты определяется сопротивлением резистора, подключенного к исследуемой катушке, и индуктивностью самой катушки. Поскольку сопротивление резистора постоянно, то указанная константа и, соответственно, ширина импульса определяются индуктивностью катушки Lx. На спаде импульса в катушке возникает ток индукции, при этом напряжение ограничивается диодом D1.
Если к исследуемой катушке через диод D2 подключен конденсатор С5, то форма импульсов будет сглажена, а конденсатор С5 будет периодически заряжаться и затем разряжаться через резистор R6. Среднее напряжение на конденсаторе С5 находится в определенной зависимости с шириной иглообразных импульсов и, таким образом, с индуктивностью измеряемой катушки. Частота импульсов, формируемых мультивибратором, и емкость конденсатора С5 выбраны таким образом, что в каждом из выбираемых диапазонов измерений напряжение на конденсаторе изменяется в пределах от 0 до 200 мВ.
Напряжение на конденсаторе С5 измеряется цифровым вольтметром с чувствительностью 200 мВ, который продается в виде готового модуля. На основании показаний вольтметра можно сделать вывод о величине индуктивности исследуемой катушки. Для того чтобы после отключения катушки напряжение на конденсаторе С5 не превысило допустимого уровня, его величина ограничивается диодом D3.
Рабочая частота мультивибратора выбирается с помощью переключателей S1A и S1B. В данном приборе при выборе первого диапазона эта частота составляет 4035 Гц, при выборе второго диапазона — 375 Гц, а в третьем диапазоне — 36 Гц.
Третья секция переключателя S1C) используется для выбора расположения точки на дисплее вольтметра. С помощью регуляторов Р1-Р3 частоту мультивибратора можно регулировать и таким образом калибровать прибор. Например, в первом диапазоне (4-199,9 мкГ) для калибровки используются две катушки с известной индуктивностью 15 мкГ и 100 мкГ. После подключения к прибору катушки с индуктивностью 100 мкГ движок подстроечного резистора Р1 следует установить в такое положение, при котором на дисплее вольтметра будет отображаться число 100,0. Затем следует подключить катушку с индуктивностью 15 мкГ и перемещением движка триммера Р1 добиться индикации числа 15 с точностью 5 %. Аналогичным образом с катушками индуктивностью 100 мкГ и 470 мкГ прибор калибруется во втором диапазоне, а с катушками индуктивностью 500 мкГ и 1 мГ — в третьем диапазоне.
Питание прибора осуществляется от сетевого источника питания, который формирует два гальванически разделенных стабилизированных напряжения. Для питания микросхемы IO1 формируется напряжение 12 В, а для питания модуля вольтметра — напряжение 9 В.
Если потребуется измерять параметры катушки, имеющей индуктивность менее 4 мкГ, то необходимо последовательно с исследуемой катушкой подключить катушку с известной индуктивностью 10 мкГ. После окончания измерений от величины, отображенной на дисплее вольтметра, следует вычесть это значение.
Глава 2
ВЫСОКОЧАСТОТНЫЕ УСТРОЙСТВА
2.1. FM-радиомикрофон
Zdeněk Hájek [4]
Простой радиомикрофон предназначен для передачи аудиосигналов на небольшое расстояние.
Эта конструкция, принципиальная схема которой приведена на рис. 5, имеет минимум деталей и обеспечивает передачу сигнала на дальность в несколько десятков метров даже в зданиях, стены которых выполнены из железобетона.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.