Пол Фрига - Инструменты McKinsey. Лучшая практика решения бизнес-проблем Страница 22

Тут можно читать бесплатно Пол Фрига - Инструменты McKinsey. Лучшая практика решения бизнес-проблем. Жанр: Бизнес / Экономика, год 2007. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Пол Фрига - Инструменты McKinsey. Лучшая практика решения бизнес-проблем
  • Категория: Бизнес / Экономика
  • Автор: Пол Фрига
  • Год выпуска: 2007
  • ISBN: 978-5-902862-56-7
  • Издательство: Издательство «Манн, Иванов и Фербер»
  • Страниц: 46
  • Добавлено: 2018-07-25 09:13:16

Пол Фрига - Инструменты McKinsey. Лучшая практика решения бизнес-проблем краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Пол Фрига - Инструменты McKinsey. Лучшая практика решения бизнес-проблем» бесплатно полную версию:
McKinsey. Это имя – знак качества в сфере консалтинга: всем известно, как сотрудники Фирмы блестяще решают чужие бизнес-проблемы. А можете ли вы сами справиться с трудностями в своей организации, применяя их секреты? Или нужно обязательно приглашать команду из McKinsey?

Опросив несколько сотен своих экс-коллег (бывших сотрудников Фирмы), успешно применяющих теперь ее техники в других организациях, авторы пришли к выводу, что многое можно осилить самостоятельно. В этой книге они предлагают инструменты McKinsey, овладев которыми вы почувствуете себя «немного маккинзиевцем» и принесете большую пользу своей компании.

Рекомендуется к прочтению бизнес-консультантам, руководителям и менеджерам, которым приходится решать проблемы и реализовывать решения на практике.

Пол Фрига - Инструменты McKinsey. Лучшая практика решения бизнес-проблем читать онлайн бесплатно

Пол Фрига - Инструменты McKinsey. Лучшая практика решения бизнес-проблем - читать книгу онлайн бесплатно, автор Пол Фрига

Ежедневно делайте заметки. В конце каждого дня спрашивайте себя: «Какие три наиболее важные вещи я узнал сегодня?» Отведите полчаса перед уходом с работы на то, чтобы изложить эти вещи на бумаге; красивое оформление не нужно, достаточно на скорую руку набросать диаграмму или краткий список из нескольких пунктов. Это упражнение даст толчок вашим мыслям. Вы не забудете то, что изобразили на этой диаграмме, даже если потом не будете использовать ее. Если же вы не зафиксируете свои мысли, то они изгладятся из памяти уже к моменту выхода из офиса.

Не подгоняйте факты под решение. Допустим, вы с командой сформулировали блестящую гипотезу; но будьте готовы к тому, что факты и анализ покажут вашу неправоту. В этом случае должна измениться именно гипотеза, а не факты.

Полученные уроки и иллюстрации внедрения

Интерпретируя результаты анализа, вы стараетесь сделать это быстро и правильно. Иногда эти две цели явно противоречат друг другу. Что на этот счет можно сказать? Обычно стоит поработать лишний день, если от него будет зависеть правильность ответа в целом. Но, как мы говорили в главе 2, вряд ли стоит тратить лишнюю неделю на то, чтобы повысить точность до четырех, а не трех знаков после запятой.

Результаты опроса бывших сотрудников McKinsey позволили нам составить следующие рекомендации:

– Всегда спрашивайте: «Что это нам даст?»

– Проводите контрольные проверки.

– Помните, что возможности анализа ограниченны.

Всегда спрашивайте: «Что это нам даст?». Составляя план анализа (этот процесс рассматривался в главе 2), вы должны были исключить из него все те исследования – даже очень изобретательные и интересные, – которые ни на шаг не продвинули бы вас к подтверждению или опровержению первоначальной гипотезы. Но как бы ни был хорош ваш рабочий план, вам почти неизбежно придется провести еще один отсев – после сбора данных, обработки цифр и интервью. Некоторые результаты окажутся тупиковыми: интересные факты, аккуратные диаграммы – но ничего такого, что приблизило бы вас к решению. И ваша задача – отбросить ненужные результаты.

В McKinsey результаты анализа проходят своего рода тест: кто-то из команды, обычно менеджер проекта, задает вопрос: «Что это нам даст?» О чем говорит этот анализ и насколько полезна эта информация? Какую рекомендацию можно дать на их основе? Работа консультантов заключается не в рисовании красивых картинок: ведь клиенты платят огромные деньги не за это. Джефф Сакагучи усвоил этот принцип в McKinsey и воплощает его на своей новой работе в Accenture:

Суть консалтинга не в анализе, а в глубоких выводах. Если вы не можете сделать такой вывод из только что проделанной работы, то вы зря потратили на нее время. Обрабатывать цифры или рисовать диаграммы ради самого этого процесса ни к чему; эти действия имеют смысл, только если они помогают сделать ключевую находку, о которой ваша команда и клиент скажут: «Хм, а это интересно!»

Консультант должен синтезировать из разрозненных идей, полученных в результате анализа, глубокие выводы, которые решат проблему клиента. А это получается лучше всего, когда каждый полученный результат выдерживает проверку вопросом «Что это нам даст?».

Проводите контрольные проверки. Конечно, всегда хочется как можно большей точности; однако в ситуации командной работы у вас как лидера команды, скорее всего, нет времени на подробную проверку всех результатов анализа. Но каждый раз, когда вам представляют какиелибо выводы и следующие из них рекомендации, вы можете провести быстрый тест, чтобы убедиться, что ответ по крайней мере правдоподобен. Задайте себе несколько целенаправленных вопросов, ответы на которые покажут, осуществима ли рекомендация и действенна ли она.

Сами вопросы варьируются в зависимости от ситуации, но вот некоторые примеры от бывших сотрудников McKinsey:

С помощью какой-нибудь простой в использовании программы – хотя бы MS Access – я могу очень быстро развенчать глупую теорию. Например, у одного сотрудника возникла мысль, что мы должны требовать возвращения товаров на склад на основе минимальных, а не максимальных уровней запасов. Я смог проверить эту идею за две минуты и определил, что результатом будет всего $4000 при запланированной прибыли в $400 000. Ради этого не стоит терять неделю, перепечатывая и рассылая по магазинам указания, которые они должны выполнять.

Боб Бухсбаум, СЕО Dick Blilck Holdings

* * *

Мне нравится применять сценарный анализ. Я спрашиваю: «В каком случае это было бы оправданно?» Например, сколько потенциальных клиентов должен принести нам веб-сайт, чтобы оправдать свое существование? Если ответ – «десять миллионов миллиардов», я сомневаюсь, что столько у нас получится. Если ответ – «пятьдесят», я скажу: «Ну ладно». Если анализ делается на основе неоправданных предположений, то можно переходить к следующей идее.

Дэн Вето, старший вице-президент Conseco

* * *

У меня был случай, когда один аналитик обработал кучу цифр из множества разных источников, пришел ко мне и сказал: «Вот ответ». Я взглянул на цифры и сказал, что этот ответ просто не может быть правильным; в противном случае мир выглядел бы совсем иначе. Поэтому, анализируя данные, обязательно сделайте мысленный шаг назад и проведите контрольную проверку.

Билл Росс, General Electric

* * *

Я всегда спрашиваю: «Насколько должен измениться наш нынешний ответ, чтобы мы изменили свой вывод?» Я решительно настаиваю на проверке предположений, а для этого добиваюсь очень четкого их обоснования. Затем я сосредоточиваю анализ на этих обоснованиях. Это значительно улучшило нашу стратегию приобретений; результаты говорят сами за себя.

Рон О’Хэнли, президент Mellon Institutional Asset Management

Хотя не существует единственного наилучшего способа проведения контрольной проверки, вы можете предотвратить многие проблемы, если перед окончательной презентацией зададите себе несколько критических вопросов.

Помните, что возможности анализа ограниченны. Анализ играет жизненно важную роль в процессе решения проблем в McKinsey, но в конечном итоге его возможности ограниченны. Необходимо сделать некоторые заключения на его основе, ведь данные не говорят сами за себя. Вы достигли той точки в нашей модели консалтинга, где ведущая роль переходит от данных к интуиции. Это то самое распутье, о котором говорил Йоги Берра, и вам нужно туда повернуть.

Но ограничения анализа – не причина, чтобы обходиться без него. Избегайте того, что один бывший сотрудник McKinsey назвал установкой «готовься, огонь, целься». Даже если у вас хорошие навыки принятия решений и надежная интуиция, будет нелишне подкрепить ваше решение продуманным анализом. Рассказывает Билл Росс:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.