Александра Малова - Основы эконометрики в среде GRETL. Учебное пособие Страница 4

Тут можно читать бесплатно Александра Малова - Основы эконометрики в среде GRETL. Учебное пособие. Жанр: Бизнес / Экономика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Александра Малова - Основы эконометрики в среде GRETL. Учебное пособие

Александра Малова - Основы эконометрики в среде GRETL. Учебное пособие краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Александра Малова - Основы эконометрики в среде GRETL. Учебное пособие» бесплатно полную версию:
Данное пособие представляет собой вспомогательный методический материал для работы в эконометрической среде GRETL. Оно предназначено студентам бакалавриата по направлениям «Экономика», «Бизнес-информатика», «Управление персоналом», «Менеджмент» для использования на практических и семинарских занятиях по курсу «Эконометрика (пространственные данные)», а также может использоваться любыми заинтересованными лицами в качестве краткого руководства по использованию GRETL. Пособие включает в себя обзор основных тем базового курса «Эконометрика», подробный разбор возможностей и функций эконометрического пакета GRETL, а также примеры практической реализации тех или иных методов. В данном издании для иллюстрации возможностей эконометрического пакета использовались примеры из учебника Jeff rey M. Wooldridge «Introductory Econometrics: A Modern Approach, 2nd edition». Все файлы с данными находятся в открытом доступе и могут быть свободно использованы. Пособие организовано таким образом, что читатель имеет возможность самостоятельно проделать все действия, необходимые для решения стоящей перед ним эконометрической задачи.

Александра Малова - Основы эконометрики в среде GRETL. Учебное пособие читать онлайн бесплатно

Александра Малова - Основы эконометрики в среде GRETL. Учебное пособие - читать книгу онлайн бесплатно, автор Александра Малова

Рис. 5.2

Тест на совместную незначимость коэффициентов также можно провести автоматически. Для этого, после того как было оценено исходное уравнение, в меню окна результатов нужно выбрать Тесты – Избыточные переменные.

Рис. 5.3

После этого в меню можно выбрать одну из опций оценивания: оценить сокращенную модель (аналог того теста, который был показан выше) или проверить избыточность переменных с использованием теста Вальда [9].

Результат оценивания с использованием сокращенной модели представлен на рис. 5.4.

Рис. 5.4

При данном методе проверки также рассчитывается F-статистика и ее значение совпадает с тем, что было получено вручную. При этом приводится оцененный вариант короткой модели (модели с ограничением). Нулевая гипотеза состоит в том, что указанные на этапе тестирования переменные нулевые. Для проверки этой гипотезы можно воспользоваться рассчитанным значением F-статистики и сравнить его с критической точкой, как это было проделано, а можно обратить внимание на р-значение = 0,254184, то есть вероятность ошибиться, отвергнув нулевую гипотезу о незначимости коэффициентов, составляет примерно 0,26. Так как р-значение > 0,05 (больше зафиксированного уровня значимости), мы принимаем нулевую гипотезу, указанные коэффициенты не значимы на 5 %-ном уровне, и соответствующие регрессоры нужно исключить из модели. Корректный вариант модели – модель с ограничением.

Аналогично можно провести тест на избыточные переменные, используя тест Вальда (рис. 5.5).

Рис. 5.5

Результаты тестирования полностью совпадают с предыдущими вариантами теста.

6. Проверка правильности спецификации модели (RESET test)

Для проверки правильности спецификации линейной регрессионной модели используется RESET-тест. Он позволяет определить, помогает ли нелинейная комбинация оцененного значения зависимой переменной лучше объяснить изменения самой зависимой переменной. Если качество объяснения при этом улучшается, значит, модель специфицирована неправильно [9].

Проведем RESET-тест для модели

то есть проверим правильность спецификации этой модели [файл с данными wage2.gdt]. Оценим предложенную регрессию и сохраним оцененные значения зависимой переменной. Для этого в окне с результатами оценки выберем пункт меню Сохранить – Расчетные значения.

Рис. 6.1

После этого включим степени расчетных значений зависимой переменной в качестве регрессоров. Как правило, число степеней может равняться числу регрессоров в исходной модели, но начинать можно и с меньшего количества. Добавить новые переменные (степени расчетных значений зависимой переменной) можно через основное меню Добавить – Добавить новую переменную и ввести формулу, можно для четных степеней воспользоваться функцией меню Добавить – Квадраты выделенных переменных, а можно прямо в окне для оценки регрессии выбрать кнопку (+), которая позволит тут же создать новую переменную.

Рис. 6.2

Результат оценки регрессии с учетом степеней расчетных значений зависимой переменной представлен на рис. 6.3.

Рис. 6.3

Как видно из распечатки на рис. 6.3, все коэффициенты в модели стали незначимы, вновь добавленные регрессоры имеют также незначимые коэффициенты. Проведем формальный тест на совместную незначимость с использованием встроенных средств GRETL.

Рис. 6.4

По результатам теста р-значение < 5 %, то есть можно отвергнуть нулевую гипотезу о совместной незначимости коэффициентов при вновь добавленных регрессорах, хотя бы один из коэффициентов при добавленных трех регрессорах значим. Из эмпирических соображений попробуем исключить последний регрессор – четвертую степень для расчетных значений зависимой переменной – и оценим модель без него.

Конец ознакомительного фрагмента.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.