Карл Андерсон - Аналитическая культура. От сбора данных до бизнес-результатов Страница 7
- Категория: Бизнес / Бизнес
- Автор: Карл Андерсон
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 8
- Добавлено: 2019-08-13 10:04:09
Карл Андерсон - Аналитическая культура. От сбора данных до бизнес-результатов краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Карл Андерсон - Аналитическая культура. От сбора данных до бизнес-результатов» бесплатно полную версию:Это практическое пошаговое руководство по внедрению в вашей организации управления на основе данных. Карл Андерсон, директор по аналитике в компании Warby Parker, провел интервью с ведущими аналитиками и учеными и собрал кейсы, которые и легли в основу данной книги. Вы узнаете, какие процессы следует ввести на всех уровнях и как именно это сделать, с какими трудностями можно столкнуться на этом пути и как их преодолеть. Автор рассказывает об аналитической цепочке ценностей, которая поможет принимать правильные решения и достигать лучших бизнес-результатов.Книга будет интересна CEO и владельцам бизнеса, менеджерам, аналитикам.На русском языке публикуется впервые.
Карл Андерсон - Аналитическая культура. От сбора данных до бизнес-результатов читать онлайн бесплатно
Итак, начнем с самого начала – с источника данных. Почему в данные могут закрасться ошибки и как с этим бороться?
ГЕНЕРАЦИЯ ДАННЫХГенерация данных – самый очевидный источник возможных ошибок, которые могут появиться в результате технологического (приборы), программного (сбои) или человеческого факторов.
В случае технологического фактора приборы могут быть настроены неправильно, что может сказаться на полученных данных. Например, термометр показывает 35 °C вместо 33 °C на самом деле. Это легко исправить: прибор или датчик можно настроить по другому, «эталонному», прибору, отражающему достоверные данные.
Иногда приборы бывают ненадежными. Мне довелось работать в грантовом проекте Агентства передовых оборонных исследовательских проектов Министерства обороны США (DARPA), посвященном групповой робототехнике. В нашем распоряжении была группа простейших роботов, задача которых заключалась в совместном картографировании местности. Сложность состояла в том, что инфракрасные датчики, установленные на роботах, были очень плохого качества. Вместо того чтобы сосредоточиться на разработке децентрализованного алгоритма для нанесения здания на карту, большую часть времени я потратил на работу с алгоритмическими фильтрами, пытаясь справиться с качеством информации от этих датчиков, измерявших расстояние до ближайшей стены или до других роботов. Значения сбрасывались, или показатель расстояния до ближайшей стены мог неожиданно измениться на целый метр (неточность > 50 %), притом что робот оставался неподвижным. Информации от этих датчиков просто нельзя было верить.
Когда в сборе данных принимают участие люди, ошибки в данных могут появиться по самым разным причинам. Сотрудники могут не знать, как правильно пользоваться оборудованием, они могут торопиться или быть невнимательными, они могут неправильно понять инструкции или не следовать им. Например, в двух больницах могут по-разному измерять вес пациентов: в обуви и без обуви. Для исправления ошибок такого рода требуются четкие инструкции и обучение персонала. Как с любым экспериментом, необходимо попытаться контролировать и стандартизировать как можно больше этапов процесса, чтобы данные оставались максимально достоверными, сравнимыми и удобными в использовании.
ВВОД ДАННЫХКогда данные генерируются вручную, например при измерении веса пациентов, их необходимо зафиксировать. Несмотря на обещания электронного офиса, большой объем данных сегодня по-прежнему сначала попадает на бумагу в качестве промежуточного шага до попадания в компьютер. На этом этапе может возникнуть множество ошибок.
Ошибки случаются при расшифровке документов, заполненных от руки. (Если бы вы видели мой почерк, у вас бы не осталось в этом сомнений.) Больше всего исследований в этой области проведено в сфере здравоохранения, частично потому что последствия использования неточной информации могут быть слишком серьезными, как с точки зрения здоровья пациентов, так и с точки зрения стоимости проведения ненужных медицинских тестов. Согласно результатам одного из исследований, 46 % медицинских ошибок (при базовом уровне 11 % от всех записей) обусловлено неточностью при расшифровке[24]. Уровень ошибок в базах данных некоторых клинических исследований достигал 27 %[25]. Подобные ошибки могли быть результатом того, что медицинский персонал неправильно читал или понимал написанное от руки, не слышал или не понимал информацию из-за плохого качества аудиоисточника или непривычных слов или неправильно вносил информацию в компьютер.
Например, я работал в одной из компаний в сфере здравоохранения, и основными базами данных, которые компания использовала чаще всего, были данные статистических опросов населения в рамках Национальной программы проверки здоровья и питания (NHANES). Мобильные клиники по всей стране проводили опросы населения: измеряли вес и артериальное давление, выясняли, есть ли в семье больные диабетом или раком, и так далее. Когда мы изучили информацию о человеческом росте в одной из баз данных по этому проекту, то обнаружили целый ряд людей с показателем роста пять дюймов (примерно 12,5 см)! Эти данные вносили в базу специально обученные сотрудники, которые изо дня в день проводили опросы населения. Поскольку измерение роста – относительно простая процедура, наиболее вероятной причиной ошибки кажется некорректный ввод информации. Возможно, рост респондентов на самом деле был пять футов и пять дюймов (примерно 162 см) или шесть футов и пять дюймов (примерно 192 см). К сожалению, поскольку мы не знали этого наверняка, нам пришлось отметить эти значения как неизвестные.
К счастью, показатель роста человека пять дюймов – это настолько очевидная ошибка, что нам удалось определить ее с помощью простой гистограммы, и мы точно понимали, что это ошибка. Однако так бывает не всегда. Есть разные степени очевидности ошибки. Предположим, что при расшифровке записей, сделанных от руки, сотрудник вместо «аллергия на кошек и собак» написал: «аллергия на окшек и собак». Слова «окшек» не существует. Очевидно, что это опечатка, а смысл легко поддается восстановлению по контексту. Более сложными могут оказаться случаи, когда при перестановке букв могут образоваться другие слова, имеющие смысл. Тогда заметить ошибку сложнее. Разобраться со смыслом можно с помощью контекста, но он не всегда служит гарантией. Наконец, представьте, что местами случайно переставили не буквы, а цифры, например в числе 56,789 поменяли две последние цифры: 56,798. Заметить ошибку в этом случае будет чрезвычайно сложно или даже невозможно.
В целом ошибки при вводе информации можно свести к четырем типам.
Запись
Введенные слова или показатели не те, что были в оригинале.
Вставка
Появление дополнительного символа: 56,789 → 564,789.
Удаление
Один или несколько символов теряются: 56,789 → 56,89.
Перемена мест
Два или более символов меняются местами: 56,789 → 56,798.
В качестве отдельных категорий «Вставки» и «Удаления» можно выделить диттографию – случайное повторение символа (56,789 → 56,7789) и гаплографию – пропуск повторяющегося символа (56,779 → 56,79). Эти термины употребляют ученые, занимающиеся восстановлением поврежденных и переписанных от руки древних текстов, и обозначают разновидность проблемы с некачественными данными.
Особенно часто опечатки встречаются в написании дат. Например, я британец, и в английской культуре принят определенный формат написания даты: день/месяц/год. Однако я живу в США, где формат написания даты отличается: месяц/день/год. Первые несколько лет жизни в США я постоянно путался, и могу предположить, что эта проблема знакома не только мне. Представьте себе сайт, на котором пользователи со всего мира вводят в специальное поле дату. У пользователей из разных стран могут быть разные ожидания относительно формата ввода этой информации, и без необходимых подсказок могут возникнуть ошибки при вводе данных. Некоторые их них легко заметить: например, 25 марта (3/25 в американском варианте) – 25 явно не может быть обозначением месяца. А как насчет 4/5? Вы уверены, что для всех пользователей эта дата обозначает 5 апреля?
Как бороться с такого рода ошибками?
Снижение количества ошибок при вводе данныхПервый шаг, если он возможен, заключается в сокращении количества этапов от генерации данных до ввода. Скажу очевидное: если есть возможность избежать бумажной формы, лучше сразу вносить данные в компьютер.
Везде, где возможно, добавьте проверку значения каждого поля в свою электронную форму (рис. 2.1). То есть если данные четко структурированы и имеют установленный формат (например, почтовый индекс в США содержит от пяти до девяти цифр, а номер социальной страховки состоит из девяти цифр), проверяйте данные на соответствие этому формату, в противном случае предложите пользователю исправить возможные ошибки. Процесс проверки не ограничен только числовыми значениями. Например, можно проверять, чтобы дата или время вылета «обратно» были позже, чем вылета «туда». Иными словами, проверяйте все что можно, чтобы максимально избежать «мусора» в самом начале.
Конец ознакомительного фрагмента.
Сноски
1
Жалоба
Напишите нам, и мы в срочном порядке примем меры.