Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews Страница 7
- Категория: Бизнес / Личные финансы
- Автор: Владимир Брюков
- Год выпуска: 2011
- ISBN: 978-5-406-01441-7
- Издательство: КНОРУС; ЦИПСиР
- Страниц: 55
- Добавлено: 2018-07-25 06:59:52
Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews» бесплатно полную версию:Детально излагаются методики построения стационарных и нестационарных статистических моделей по прогнозированию курса доллара США с использованием программ EViews и Excel. При этом прогнозы по курсу доллара к рублю делаются с упреждением в один месяц, две и одну неделю, а по курсу евро к доллару — с упреждением в один день. Особый акцент сделан на составлении (с установленным инвестором уровнем надежности) прогнозов цен покупки и продажи валют для работы на валютном рынке на основе разработанных статистических моделей. Все методики с успехом применяются на практике.
Для всех, кто интересуется валютным рынком, собирается зарабатывать или уже зарабатывает на этом рынке, хочет научиться делать прогнозы по курсам валют. Для валютных инвесторов, трейдеров и студентов, будущая профессия которых связана с работой в банке, финансовой компании или с операциями на финансовых и товарных рынках.
Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews читать онлайн бесплатно
3. Столбец MS означает дисперсию на одну степень свободы, которая находится по следующей формуле:
Для строки РЕГРЕССИЯ — это факторная, или объясненная, дисперсия:
Dфакт = МSфакт = 21 779,45/1 = 21 779,45.
Для строки ОСТАТОК — это остаточная дисперсия:
Dост = MSост= 8676,619/213 = 40,7353.
4. В столбце F дается фактический F-критерий Фишера, который находится путем сопоставления факторной и остаточной дисперсии на одну степень свободы. При этом F-критерий Фишера рассчитывается по следующей формуле:
Если нулевая гипотеза (об отсутствии связи между переменными, включенными в уравнение регрессии) справедлива, то факторная и остаточная дисперсия не отличаются друг от друга. Чтобы уравнение регрессии было признано значимым, требуется опровержение нулевой гипотезы, а для этого необходимо, чтобы факторная дисперсия превышала остаточную дисперсию в несколько раз. Статистиками разработаны соответствующие таблицы критических значений F-критерия при разных уровнях значимости нулевой гипотезы и различном числе степеней свободы. При этом следует иметь в виду, что табличное значение F-критерия — это максимальная величина отношения факторной дисперсии к остаточной дисперсии, которая может иметь место при случайном их расхождении для данного уровня вероятности наличия нулевой гипотезы. Если фактический (т. е. рассчитанный для этого уравнения регрессии) F-критерий больше его табличного значения, то нулевая гипотеза об отсутствии связи между результативным признаком и факторами отклоняется и делается вывод о существенности этой связи.
5. В столбце ЗНАЧИМОСТЬ F дается уровень значимости, который соответствует величине фактического F-критерия Фишера, вычисленного для этого уравнения регрессии. В нашем случае значимость Fфакт практически равна нулю, т. е. Fфакт больше Fтабл (значения F-критерия Фишера при уровне значимости 0,05 или 5 % можно найти в любом учебнике по статистике) при 1 %-ном и 5 %-ном уровне значимости. Отсюда можно сделать вывод о статистической значимости уравнения регрессии, поскольку связь между включенными в него факторами в этом случае доказана.
В тех случаях, когда значимость F бывает больше, например, 0,01, но меньше 0,05, то тогда делается вывод, что Fфакт меньшеFтабл при 1 %-ном уровне значимости, но больше Fтабл при 5 %-ном уровне значимости. Следовательно, в этой ситуации нулевая гипотеза об отсутствии связи между результативным признаком и факторами, включенными в уравнение регрессии, на 1 %-ном уровне значимости не отклоняется, но отклоняется на 5 %-ном уровне значимости. Таким образом, в этом случае каждый исследователь должен сам решить, считать ли 5 %-ный уровень значимости F-критерия достаточным для того, чтобы сделать вывод о статистической значимости уравнения регрессии. При этом следует иметь в виду, что если значимость F-критерия выше 0,05, т. е. Fфакт меньше Fтабл при 5 %-ном уровне значимости, то в этой ситуации уравнение регрессии, как правило, считается статистически незначимым.
В таблице 2.4 сгенерированы коэффициенты уравнения регрессии и оценки их статистической значимости.
1. В столбце КОЭФФИЦИЕНТЫ представлены коэффициенты уравнения регрессии. На пересечении этого столбца со строкой Y-ПЕРЕСЕЧЕНИЕ дан свободный член, который в формуле линейного уравнения регрессии (2.2) обозначен символом а = 1,995805.
Во второй строке этого столбца, обозначенной как Time (независимая переменная — порядковый номер месяца), сгенерирован коэффициент уравнения регрессии, который в формуле (2.2) представлен символом b = 0,162166.
Таким образом, данные, представленные в столбце Коэффициенты, дают нам возможность составить путем подстановки соответствующих цифр в формулу (2.2) следующее уравнение линейной парной регрессии:
Y = 0,1622Х + 1,9958,
где независимая переменная X означает порядковый номер месяца (июнь 1992 г. — 1, а апрель 2010 г. — 215);
зависимая переменная Y — ежемесячное значение курса доллара.
При этом экономическая интерпретация этого линейного уравнения следующая: в период с июня 1992 г. по апрель 2010 г. курс доллара к рублю ежемесячно рос со средней скоростью 16,22 коп. при исходном уровне временного ряда в размере 1 руб. 99,58 коп. В свою очередь геометрическая интерпретация этого линейного уравнения следующая: свободный член уравнения 1,9958 показывает точку пересечения линии тренда с осью Y, а коэффициент уравнения 0,1622х равен углу наклона линии тренда к оси Х(см. рис. 2.5).
2. В столбце СТАНДАРТНАЯ ОШИБКА сгенерированы стандартные ошибки свободного члена и коэффициента регрессии, значения которых даны во втором столбце табл. 2.4. При этом стандартная ошибка свободного члена уравнения регрессии находится по следующей формуле:
где MSост = Dост — остаточная дисперсия, приходящаяся на одну степень свободы.
Для нашего случая стандартная ошибка свободного члена уравнения регрессии равна
В свою очередь стандартная ошибка коэффициента регрессии оценивается по следующей формуле:
Для нашего случая стандартная ошибка коэффициента регрессии имеет следующее значение:
3. В столбце t-СТАТИСТИКА даны расчетные значения /-критерия. При этом для свободного члена /-статистика вычисляется по формуле
где а — свободный член уравнения.
В нашем случае t-статистика находится следующим образом:
Для коэффициента регрессии t-статистика рассчитывается по формуле
где b — коэффициент регрессии.
Тогда Z-статистика находится следующим образом:
4. В столбце Р-ЗНАЧЕНИЕ сгенерированы уровни значимости, соответствующие значениям t-статистики.
В Excel Р-значение находится с помощью следующей функции:
СТЬЮДРАСП (X = tст; df= п- к — 1; хвосты = 2),
где в опции X дается t-статистика, для которой нужно вычислить двустороннее распределение;
Жалоба
Напишите нам, и мы в срочном порядке примем меры.