А. Красько - Схемотехника аналоговых электронных устройств Страница 17
- Категория: Компьютеры и Интернет / Компьютерное "железо"
- Автор: А. Красько
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 31
- Добавлено: 2019-06-19 13:52:18
А. Красько - Схемотехника аналоговых электронных устройств краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «А. Красько - Схемотехника аналоговых электронных устройств» бесплатно полную версию:В учебном пособии рассмотрены теоретические основы и принципы действия аналоговых устройств на биполярных и полевых транзисторах. Анализируются основные схемы, используемые в аналоговых трактах типовой радиоэлектронной аппаратуры, приводятся расчетные формулы, позволяющие определить элементы принципиальных схем этих устройств по требуемому виду частотных, фазовых и переходных характеристик. Излагаются основы построения различных функциональных устройств на основе операционных усилителей. Рассмотрены так же ряд специальных вопросов с которыми приходится сталкиваться разработчикам аналоговых электронных устройств – оценка нелинейных искажений, анализ устойчивости, чувствительности и др. Пособие предназначено для студентов, обучающихся по направлениям подготовки 552500, 654200 – «Радиотехника», 654100 – «Электроника и микроэлектроника», и может быть полезно для преподавателей и научных работников.
А. Красько - Схемотехника аналоговых электронных устройств читать онлайн бесплатно
Двухполярное питание позволяет обойтись на входах (выходах) ДУ без мостовых схем за счет снижения потенциалов баз (коллекторов) до потенциала общей шины.
Рассмотрим работу ДУ для основного рабочего режима — дифференциального. За счет действия Uвх1 транзистор VT1 приоткрывается, и его ток эмиттера получает приращение ΔIэ1, а за счет действия Uвх2 транзистор VT2 призакрывается, и ток его эмиттера получает отрицательное приращение –ΔIэ2. Следовательно, результирующее приращение тока в цепи резистора Rэ при идеально симметричных плечах близко к нулю и, следовательно, ООС для дифференциального сигнала отсутствует.
При анализе ДУ выделяют два плеча, представляющие собой каскады с ОЭ, в общую цепь эмиттеров транзисторов которых включен общий резистор Rэ, которым и задается их общий ток. В связи с этим представляется возможным при расчете частотных и временных характеристик ДУ пользоваться соотношениями подразделов 2.5 и 2.12 с учетом замечаний, приведенных в подразделе 4.4. Например, коэффициент усиления дифференциального сигнала KU диф будет равен в случае симметрии плеч (см. подраздел 4.4) KU диф=2·KU пл=K0, т.е. дифференциальный коэффициент усиления равен коэффициенту усиления каскада с ОЭ.
ДУ отличает малый дрейф нуля, большой коэффициент усиления дифференциального (противофазного) сигнала KU диф и большой коэффициент подавления синфазных помех, т.е. малый коэффициент передачи синфазного сигнала KU сф.
Для обеспечения качественного выполнения этих функций необходимо выполнить два основных требования. Первое из них состоит в обеспечении симметрии обоих плеч ДУ. Приблизиться к выполнению этого требования позволила микроэлектроника, поскольку только в монолитной ИМС близко расположенные элементы действительно имеют почти одинаковые параметры с одинаковой реакцией на воздействие температуры, старения и т.п.
Второе требование состоит в обеспечении глубокой ООС для синфазного сигнала. В качестве синфазного сигнала для ДУ выступают помехи, наводки, поступающие на входы в фазе. Поскольку Rэ создает глубокую ПООСТ для обоих плеч ДУ, то для синфазного сигнала будет наблюдаться значительное уменьшение коэффициентов передачи каскадов с ОЭ, образующих эти плечи.
Коэффициент усиления каждого плеча для синфазного сигнала можно представить как K0ОС каскада с ОЭ при глубокой ООС. Согласно подраздела 3.2 имеем:
KU сф1 ≈ Rк1/Rэ,
KU сф2 ≈ Rк2/Rэ.
Теперь можно записать для KU сф всего ДУ:
KU сф ≈ ΔRк/Rэ,
где ΔRк = |Rк1 – Rк2|.
Для оценки подавления синфазного сигнала вводят коэффициент ослабления синфазного сигнала (КОСС), равный отношению модулей коэффициентов передач дифференциального и синфазного сигналов.
Из сказанного следует, что увеличение КОСС возможно путем уменьшения разброса номиналов резисторов в цепях коллекторов (в монолитных ИМС — не более 3%) и путем увеличения Rэ. Однако увеличение Rэ требует увеличения напряжения источника питания (что неизбежно приведет к увеличению рассеиваемой тепловой мощности в ДУ), и не всегда возможно из-за технологических трудностей реализации резисторов больших номиналов в монолитных ИМС.
Решить эту проблему позволяет использование электронного эквивалента резистора большого номинала, которым является источник стабильного тока (ИСТ), варианты схем которого приведены на рисунке 5.6.
Рисунок 5.6. ИСТ на БТ и ПТ
ИСТ подключается вместо Rэ (см. рисунок 5.5), а заданный ток и термостабильность обеспечивают элементы R1, R2, Rэ и VD1 (рисунок 5.6а), и R1 (рисунок 5.6б). Для реальных условий ИСТ представляет собой эквивалент сопротивления для изменяющегося сигнала номиналом до единиц мегом, а в режиме покоя — порядка единиц килоом, что делает ДУ экономичным по питанию.
Использование ИСТ позволяет реализовать ДУ в виде экономичной ИМС, с КОСС порядка 100 дБ.
При использовании ПТ характер построения ДУ не меняется, следует только учитывать особенности питания и термостабилизации ПТ.
5.4. Схемы включения ДУ
Можно выделить четыре схемы включения ДУ: симметричный вход и выход, несимметричный вход и симметричный выход, симметричный вход и несимметричный выход, несимметричный вход и выход.
Схема включения ДУ симметричный вход и выход приведена на рисунке 5.7 и в особых комментариях не нуждается, такая схема включения применяется при каскадировании ДУ.
Рисунок 5.7. Схема включения ДУ «симметричный вход и выход»
Схема включения ДУ несимметричный вход и симметричный выход рассматривалась ранее (см. рисунок 4.9).
Схема включения ДУ симметричный вход и несимметричный выход приведена на рисунке 5.8.
Рисунок 5.8. Схема включения ДУ «симметричный вход — несимметричный выход»
Такая схема включения ДУ применяется в случае необходимости перехода от симметричного источника сигнала (либо симметричного тракта передачи) к несимметричной нагрузке (несимметричному тракту передачи). Нетрудно показать, что дифференциальный коэффициент усиления при таком включении будет равен половине KU диф при симметричной нагрузке. Вместо резисторов Rк в ДУ часто используют транзисторы, выполняющие функции динамических нагрузок. В рассматриваемом варианте включения ДУ целесообразно использовать в качестве динамической нагрузки так называемое токовое зеркало, образованное транзисторами VT3 и VT4 (рисунок 5.9).
Рисунок 5.9. Схема ДУ с токовым зеркалом
При подаче на базу транзистора VT1 положительной полуволны гармонического сигнала Uвх1, в цепи транзистора VT3 (включенного по схеме диода) возникает приращение тока ΔIк1. За счет этого тока возникает приращение напряжения между базой и эмиттером VT3, которое является приращением входного напряжения для транзистора VT4. Таким образом, в цепи коллектор-эмиттер VT4 возникает приращение тока, практически равное ΔIк1, поскольку в ДУ плечи симметричны. В рассматриваемый момент времени на базу транзистора VT2 подается отрицательная полуволна входного гармонического сигнала Uвх2. Следовательно, в цепи его коллектора появилось отрицательное приращение тока ΔIк2. При этом приращение тока нагрузки ДУ равно ΔIк1+ΔIк2, т.е. ДУ с отражателем тока обеспечивает большее усиление дифференциального сигнала. Необходимо также отметить, что для рассматриваемого варианта ДУ в режиме покоя ток нагрузки равен нулю.
При несимметричном входе и выходе работа ДУ в принципе не отличается от случая несимметричный вход — симметричный выход. В зависимости от того, с какого плеча снимается выходной сигнал, возможно получение синфазного или противофазного выходного сигнала, как это получается в фазоинверсном каскаде на основе ДУ (см. подраздел 4.4).
5.5. Точностные параметры ДУ
К точностным параметрам ДУ относятся паразитные напряжения и токи, имеющие место в режиме покоя, но оказывающие влияние на качество усиления рабочего сигнала.
В реальном ДУ за счет асимметрии плеч на выходе устройства всегда присутствует паразитное напряжение между выходами. Для сведения его к нулю на вход (плеча) необходимо подать компенсирующий сигнал — напряжение смещения нуля Uсм, представляющее собой кажущийся входной дифференциальный сигнал.
Напряжение Uсм порождается, в основном, разбросом величин обратных токов эмиттерных переходов Iэбо1 и Iэбо2 (U'см), и разбросом номиналов резисторов Rк1 и Rк2 (U"см). Для этих напряжений можно записать:
U'см = φT·ln(Iэбо1/Iэбо2),
U"см = 2·φT·ΔRк/Rк.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.