А. Красько - Схемотехника аналоговых электронных устройств Страница 27
- Категория: Компьютеры и Интернет / Компьютерное "железо"
- Автор: А. Красько
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 31
- Добавлено: 2019-06-19 13:52:18
А. Красько - Схемотехника аналоговых электронных устройств краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «А. Красько - Схемотехника аналоговых электронных устройств» бесплатно полную версию:В учебном пособии рассмотрены теоретические основы и принципы действия аналоговых устройств на биполярных и полевых транзисторах. Анализируются основные схемы, используемые в аналоговых трактах типовой радиоэлектронной аппаратуры, приводятся расчетные формулы, позволяющие определить элементы принципиальных схем этих устройств по требуемому виду частотных, фазовых и переходных характеристик. Излагаются основы построения различных функциональных устройств на основе операционных усилителей. Рассмотрены так же ряд специальных вопросов с которыми приходится сталкиваться разработчикам аналоговых электронных устройств – оценка нелинейных искажений, анализ устойчивости, чувствительности и др. Пособие предназначено для студентов, обучающихся по направлениям подготовки 552500, 654200 – «Радиотехника», 654100 – «Электроника и микроэлектроника», и может быть полезно для преподавателей и научных работников.
А. Красько - Схемотехника аналоговых электронных устройств читать онлайн бесплатно
На рисунке 7.31а приведена схема высококачественного стабилизатора на ОУ.
Рисунок 7.31. Стабилизаторы напряжения на ОУ
Здесь ОУ используется в качестве буферного усилителя. Высокое значение входного сопротивления ОУ обеспечивает идеальные условия для работы стабилитрона. Нагрузка может быть достаточно низкоомной, т.к. выход ОУ низкоомный за счет действия 100% ПООСН.
Недостатком рассмотренного стабилизатора является малый рабочий ток, обусловленный низкой нагрузочной способностью ОУ. Избежать этого недостатка можно усилением выходного тока ОУ с помощью внешних транзисторов, используемых в режиме повторителей напряжения (рисунок 7.31б). Здесь к выходу ОУ подключен составной транзистор (VT1, VT2, VT3) по схеме с ОК. Максимальный ток нагрузки такого стабилизатора ориентировочно равен
Iн max = IОУ max·H21Э1·H21Э2·H21Э3.
Необходимое напряжение стабилизации определяется выбором типа стабилитрона VD и, помимо этого, соответствующим выбором резисторов R1 и R2. Устройство не нуждается в емкости фильтра на выходе, т.к. здесь используется эффект умножения по отношению к нагрузке емкости конденсатора C, подключенного к базе VT3.
Другие устройства вторичных источников питания описаны в [12, 14].
8. СПЕЦИАЛЬНЫЕ ВОПРОСЫ АНАЛИЗА АЭУ
8.1. Оценка нелинейных искажений усилительных каскадов
Аналитический расчет НИ представляет собой довольно сложную задача и в полной мере может проводиться с помощью ЭВМ.
Для каскадов на БТ возможна аналитическая оценка НИ для случая малых нелинейностей (Uвх одного порядка с φT=25.6 мВ) [15].
Обычно уровень НИ характеризуется коэффициентом гармоник Kг. Суммарный коэффициент гармоник равен
где Kг2 и Kг3 соответственно коэффициенты гармоник по второй и третьей гармоническим составляющим (составляющими более высокого порядка можно пренебречь ввиду их относительной малости).
Коэффициенты гармоник Kг2 и Kг3, независимо от способа включения БТ, определяются из следующих соотношений:
где B — фактор связи (петлевое усиление).
Данные выражения учитывают только нелинейность эмиттерного перехода и получены на основе разложения в ряд Тейлора функции тока эмиттера Iэ=Iэ0exp(Uвх/φT).
Фактор связи зависит от способа включения транзистора и вида обратной связи. Для каскада с ОЭ и ПООСТ имеем:
где Rг — сопротивление источника сигнала (или Rвых предыдущего каскада); Rос — сопротивление ПООСТ (см. подраздел 3.2, в случае отсутствия ПООСТ Rос=0).
Для каскада с ОЭ и ∥ООСН
где Rэкв=Rк∥Rн, Rос — сопротивление ∥ООСН (см. подраздел 3.4).
Для каскада с ОК
где Rэкв=Rэ∥Rн (см. подраздел 2.8).
Для каскада с ОБ
Коэффициенты гармоник Kг2 и Kг3, независимо от способа включения ПТ, определяются из следующих соотношений:
где A — коэффициент, равный второму члену разложения выражения для нелинейной крутизны в ряд Тейлора, равный [15]
A=Iси/U²отс,
где Iси и Uотс см. рисунок 2.33.
Фактор связи B зависит от способа включения транзистора и вида ООС. Для каскада с ОИ и ПООСТ имеем:
B = S0(Rос + rи),
где Rос — сопротивление ПООСТ (см. подраздел 3.2, в случае отсутствия ПООСТ Rос=0).
Для каскада с ОИ и ∥ООСН имеем:
B = S0RгRэкв/Rос,
где Rэкв=Rс∥Rн, Rос — сопротивление ∥ООСН (см. подраздел 3.4).
Для каскада с ОС
B = S0(Rэкв + rи),
где Rэкв=Rс∥Rн (см. подраздел 2.11).
Для каскада с ОЗ
B = S0((Rг∥Rи) + rи).
В приведенных выше выражениях rи — сопротивление тела полупроводника в цепи истока, rи≈1/Sси, где Sси — см. подраздел 2.10, для маломощных ПТ rи=(10…200) Ом; Rи — см. рисунок 2.38.
Приведенные соотношения для оценки Kг дают хороший результат в случае малых нелинейностей, в режиме больших нелинейностей следует воспользоваться известными машинными методами [4], или обратиться к графическим методам оценки НИ [6].
8.2. Расчет устойчивости УУ
Оценку устойчивости УУ, представленного эквивалентным четырехполюсником, описываемым Y-параметрами, удобно проводить с помощью определения инвариантного коэффициента устойчивости [2]:
При k>1 усилитель безусловно устойчив, при k<1 — потенциально неустойчив, т.е. существуют такие сочетания полных проводимостей нагрузки и источника сигнала, при которых возможно возникновение генерации.
Устойчивость усилителя с учетом проводимости нагрузки и источника сигнала определяется следующим соотношением:
При k>1 усилитель безусловно устойчив, при k<1 — неустойчив, k=1 соответствует границе устойчивости.
Эквивалентные Y-параметры усилителя определяются, согласно методике подраздела 2.3, в заданных точках диапазона рабочих частот. Использование инвариантного коэффициента устойчивости особенно удобно при машинном анализе УУ. Другие методы оценки устойчивости описаны в [6].
8.3. Расчет шумовых характеристик УУ
Шумы в УУ в основном определяются шумами активных сопротивлений и усилительных элементов, расположенных во входных каскадах. Наибольший вклад в мощность шума, создаваемого усилительным каскадом, вносит усилительный элемент. Наличие собственных источников шумов ограничивает возможность усиления слабых сигналов.
В зависимости от природы возникновения, собственные шумы транзистора подразделяются на тепловые, дробовые, шумы токораспределения, избыточные и т.д.
Тепловые шумы обусловлены беспорядочными перемещениями свободных носителей заряда в проводниках и полупроводниках, дробовые — дискретностью заряда носителей (электронов и "дырок") и случайным характером инжекции и экстракции их через p-n-переходы. Шум токораспределения вызывается флуктуациями распределения тока эмиттера на токи коллектора и базы. Все вышеперечисленные виды шумов имеют равномерный спектр.
Природа избыточных шумов до конца еще не выяснена. Обычно их связывают с флуктуациями состояния поверхности полупроводников. Спектральная плотность этих шумов обратно пропорциональна частоте, что послужило поводом для названия их шумами типа 1/f. Еще их называют фликкер-шумами, шумами мерцания и контактными шумами. Шумы типа 1/f сильно возрастают при дефектах в кристаллической решетке полупроводника.
Наиболее весомый вклад в мощность шумов усилительных элементов вносят тепловые шумы.
Шумы активных элементов можно представить в виде источника напряжения (рисунок 8.1а) или источника тока (рисунок 8.1б).
Рисунок 8.1. Эквивалентные схемы активного шумового сопротивления
Соответствующие значения ЭДС и тока этих источников следующие (см. подраздел 2.2):
где Δf — полоса рабочих частот; k=1,38·10-23 — постоянная Больцмана; T — температура в градусах Кельвина; Rш — шумовое сопротивление, Gш — шумовая проводимость, Gш=Rш-1.
Для стандартной температуры Т=290°K эти формулы можно упростить:
Спектральные плотности шумов по напряжению и току составляют [17]:
где , — дифференциалы от среднеквадратичных напряжений и токов шумов как случайных функций времени t, действующих в полосе пропускания df.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.