Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform Страница 16

Тут можно читать бесплатно Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform. Жанр: Компьютеры и Интернет / Программное обеспечение, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform

Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform» бесплатно полную версию:
Книга "Введение в QNX/Neutrino 2» откроет перед вами в мельчайших подробностях все секреты ОСРВ нового поколения от компании QNX Software Systems Ltd (QSSL) — QNX/Neutrino 2. Книга написана в непринужденной манере, легким для чтения и понимания стилем, и поможет любому, от начинающих программистов до опытных системотехников, получить необходимые начальные знания для проектирования надежных систем реального времени, от встраиваемых управляющих приложений до распределенных сетевых вычислительных системВ книге подробно описаны основные составляющие ОС QNX/Neutrino и их взаимосвязи. В частности, уделено особое внимание следующим темам:• обмен сообщениями: принципы функционирования и основы применения;• процессы и потоки: базовые концепции, предостережения и рекомендации;• таймеры: организация периодических событий в программах;• администраторы ресурсов: все, что относится к программированию драйверов устройств;• прерывания: рекомендации по эффективной обработке.В книге представлено множество проверенных примеров кода, подробных разъяснений и рисунков, которые помогут вам детально вникнуть в и излагаемый материал. Примеры кода и обновления к ним также можно найти на веб-сайте автора данной книги, www.parse.com.

Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform читать онлайн бесплатно

Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать книгу онлайн бесплатно, автор Роб Кёртен

В наших примерах будем отталкиваться от стандартной модели «ввод-обработка-вывод». В наиболее общем случае одна часть этой модели ответственна за получение откуда-либо входных данных, другая часть — за обработку этих данных и преобразование их в некоторые выходные данные (или управляющие воздействия), третья часть — за отправку полученных выходных данных куда надо.

Несколько процессов

Давайте, во-первых, осмыслим, что мы будем иметь в случае нескольких однопоточных процессов. Для нашей модели у нас было бы три процесса — процесс «ввода», процесс «обработки» и процесс «вывода»:

Система 1: Несколько операций, несколько процессов.

В таком виде наша модель в высшей степени абстрактна, но и в такой же степени «слабо связана». Процесс «ввода» не имеет никакой реальной связи ни с процессом «обработки», ни с процессом «вывода» — он просто отвечает за сбор входных данных и передачу их как-нибудь на следующий этап («этап обработки»).

Мы могли бы сказать то же самое о процессах «обработки» и «вывода» — они также не имеют никакой реальной связи друг с другом. Также здесь предполагается, что обмен данными («ввод — обработка» и «обработка — вывод») осуществляется по некоторому стандартному протоколу (например, через программные каналы, очереди сообщений POSIX, обмен сообщениями QNX/Neutrino — что угодно).

Несколько процессов с разделяемой памятью

В зависимости от объема потока данных, мы можем пожелать оптимизировать характер связей. Самый простой путь состоит в том, чтобы связать три процесса «теснее». Попробуем теперь вместо использования универсального протокола соединения выбрать схему с разделяемой памятью (на диаграмме толстые стрелки указывают потоки данных; тонкие стрелки — потоки управления):

Система 2: Несколько операций, буферы разделяемой памяти между процессами.

В данной схеме мы «подтянули» связь так, чтобы в результате обеспечить более быстрый и более эффективный обмен данными. В то же время, мы здесь по-прежнему можем применять универсальный протокол для передачи «управляющей» информации, поскольку предполагается, что по сравнению с потоком данных ее не так много.

Несколько потоков

Система с наиболее тесными связями представлена на следующей схеме:

Система 3: Несколько операций, несколько потоков.

Здесь мы наблюдаем один процесс с тремя потоками. Все три потока неявно разделяют области данных. Обмен управляющей информацией может быть реализован аналогично предыдущим примерам или с помощью ряда примитивов синхронизации потоков (мы уже имели дело с мутексами, барьерами и семафорами — скоро рассмотрим и другие).

Сравнение

Давайте теперь сравним эти три метода по ряду критериев и взвесим все «за» и «против».

В системе 1 связь была самой слабой. Это имеет то преимущество, что каждый из трех процессов может быть легко (то есть при помощи командной строки, в противоположность перекомпиляции/переработке) заменен другим модулем. Это следует из самой природы модели, потому что «единицей модульности» здесь является сам функциональный модуль. Система 1 является также единственной, которая из всех трех может быть распределена по узлам сети QNX/Neutrino. Поскольку информационные связи здесь абстрагированы до некоторого универсального протокола, очевидно, что эти три процесса могут быть выполнены на любой машине в сети. Это может быть очень мощным фактором масштабируемости в Вашем проекте — вам может понадобиться расширить свою сеть до сотен узлов, либо разделенных географически, либо как-то иначе — например, для совместимости с другими аппаратными средствами.

Однако, как только мы переходим к применению разделяемой памяти, мы теряем способность распределять модули по сети. QNX/Neutrino не поддерживает распределенные объекты разделяемой памяти. Таким образом, в Системе 2 мы реально ограничили себя выполнением всех трех процессов на одной и той же машине. Мы не потеряли способность легкой замены или исключения модулей, потому что модули все еще представляют собой отдельные процессы, управляемые командной строкой. Но мы добавили ограничение, в соответствии с которым все заменяемые компоненты должны соответствовать модели с разделяемой памятью.

В системе 3 мы теряем все отмеченные ранее проектные возможности. Мы определенно не можем выполнять различные потоки одного процесса на различных узлах (хотя при этом мы можем выполнять их на различных процессорах в SMP-системе). Также мы потеряли наши возможности переконфигурации — теперь нам обязательно понадобится механизм явного доопределения, который из алгоритмов «ввода», «обработки» и «вывода» мы должны использовать (эту проблему можно решить с помощью разделяемых объектов, также известных как динамические библиотеки — DLL).

Так почему же я должен проектировать свою систему, используя многопоточность, как в Системе 3? Почему бы мне для обеспечения максимальной универсальности не выбрать Систему 1?

Ну, даже при том, что Система 3 является наиболее ригидной, она, скорее всего, окажется самой быстродействующей. В ней не будет переключений контекста между потоками в различных процессах, мне не придется настраивать разделяемую память, а также применять абстрактные методы синхронизации типа программных каналов, очередей сообщений POSIX или обмен сообщениями QNX/Neutrino для обеспечения доставки данных или управляющей информации — я смогу использовать базовые примитивы синхронизации потоков на уровне ядра. Другим преимуществом является то, что при запуске системы, состоящей из одного процесса (с тремя потоками), я могу быть уверен, что все, что мне понадобится далее, уже загружено с носителя (то есть потом не выяснится что-то типа «Опа! А нужного-то драйвера на диске и нету...») И, наконец, Система 3 также, скорее всего, будет наиболее компактной, потому что не придется использовать три отдельных копии информации, характерной для процессов (например, дескрипторы файлов).

Мораль: знайте, какое решение сулит какие выгоды и какие потери, и применяйте то, что будет оптимальным для вашего конкретного проекта.

Дополнительно о синхронизации

Мы уже обсудили:

• мутексы;

• семафоры;

• барьеры.

Давайте теперь завершим нашу дискуссию о синхронизации, обсудив следующее:

• блокировки чтения/записи (reader/writer locks);

• ждущие блокировки (sleepons);

• условные переменные (condition variables);

• дополнительные сервисы QNX/QNX/Neutrino.

Блокировки чтения/записи

Блокировки чтения/записи применяются точно в соответствии с их названием: несколько «читателей» могут использовать ресурс в отсутствие «писателей», или один «писатель» может использовать ресурс в отсутствие «читателей» и других «писателей».

Эта ситуация возникает достаточно часто для того, чтобы создать отдельный примитив синхронизации специально для этих целей.

У вас будет часто возникать ситуация разделения структуры данных группой потоков. Очевидно, что в любой момент времени только один поток может записывать данные в эту структуру. Если бы запись велась более чем одним потоком одновременно, одни потоки могли бы записать свои данные поверх данных других потоков. Для предотвращения таких ситуаций поток-«писатель» должен эксклюзивно получить блокировку чтения/записи («rwlock»), обозначив этим, что он и только он имеет доступ к структуре данных. Заметьте, что это исключительное право доступа «строго контролируется на добровольных началах» — обеспечение того, чтобы все потоки, которые пользуются указанной областью данных, синхронизировались с использованием блокировок чтения/ записи, зависит только от вас.

С «читателями» ситуация противоположная. Поскольку считывание области данных — неразрушающая операция, любое число потоков может считывать данные (даже если ту же часть данных в этот момент считывает другой поток). Сложным моментом здесь является то, что никто не должен производить запись в область данных, из которой в этот момент ведется чтение. В противном случае, считывающие потоки могут быть «введены в заблуждение» — например, поток мог бы считать часть данных, затем быть вытесненным потоком-«писателем» затем возобновиться и продолжить считывание данных, но уже обновленных! Это может закончиться нарушением целостности данных.

Давайте рассмотрим вызовы, которые вы могли бы использовать при применении блокировок чтения/записи.

Первые два вызова используются для инициализации внутренних областей памяти для rwlock-блокировок (чтения/записи):

int pthread_rwlock_init(pthread_rwlock_t *lock,

 const pthread_rwlockattr_t *attr);

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.