Albert Makhmutov - Идиомы и стили С++ Страница 10

Тут можно читать бесплатно Albert Makhmutov - Идиомы и стили С++. Жанр: Компьютеры и Интернет / Программирование, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Albert Makhmutov - Идиомы и стили С++

Albert Makhmutov - Идиомы и стили С++ краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Albert Makhmutov - Идиомы и стили С++» бесплатно полную версию:

Albert Makhmutov - Идиомы и стили С++ читать онлайн бесплатно

Albert Makhmutov - Идиомы и стили С++ - читать книгу онлайн бесплатно, автор Albert Makhmutov

};

int CInt::iCounter = 0;

CInt::CInt (int _i=0): m_i(_i) {

 m_instance = ++iCounter;

 cout‹‹"defa constr " ‹‹ m_instance ‹‹ " "‹‹ m_i‹‹ endl;

}

CInt::CInt (const CInt& _i): m_i(_i.m_i) {

 m_instance = ++iCounter;

 cout‹‹"copy constr " ‹‹ m_instance ‹‹ " "‹‹ m_i‹‹ endl;

}

CInt::~CInt () {

 iCounter--;

 cout ‹‹"~destructor " ‹‹ m_instance ‹‹ " "‹‹ m_i‹‹ endl;

}

CInt& CInt::operator=(const CInt& _i) {

 m_i = _i.m_i;

 cout ‹‹"assert oper " ‹‹ m_instance ‹‹ " "‹‹ m_i‹‹ endl;

 return *this;

}

CInt CInt::operator+(const CInt& _i) {

 cout‹‹"addi operat " ‹‹ m_instance ‹‹ " "‹‹ m_i‹‹ endl;

 return CInt (m_i + _i.m_i);

}

CInt& CInt::operator+= (const CInt& _i) {

 m_i += _i.m_i;

 cout‹‹"autoadd ope " ‹‹ m_instance ‹‹ " "‹‹ m_i‹‹ endl;

 return *this;

}

/*

CInt::operator int () {

 return m_i;

}

*/

int main (void) {

 cout ‹‹ "start" ‹‹ endl;

 // Позиция 1.

 CInt i_test = CInt (2) + CInt (4);

 cout ‹‹ "firststop" ‹‹ endl;

 {

  // Позиция 2.

 }

 cout ‹‹ "thirdstop" ‹‹ endl;

 return 0;

}

Пояснения: класс представляет целые числа. Определены конструктор по умолчанию и копирования, присваивание, пара арифметических операторов, оператор преобразования в int (закомментирован). В функции main отмечены 2 позиции для экспериментов.

Еще момент - вызвала затруднения форма конструктора со списком инициализации, типа этой:

CClass::CClass (int _a, int _b, int _c) : m_a(_a), m_bc(_b, _c) {}

Тут нет ничего такого, просто конструкторы членов-переменных и базовых классов вызываются явно со своими параметрами, это выгоднее чем создавать пустые, а потом в теле конструктора выполнять ПРИСВАИВАНИЕ при помощи оператора operator=().

Попробуем в позицию 1 поставить:

CInt i_test = 1 + 2;

Вызовется только один конструктор - по умолчанию. Это одно и то же:

CInt i_test = 3; ‹=====› CInt i_test(3);

Попробуем так

CInt i_test;

i_test = CInt(1) + CInt(2);

Сначала создается первый объект, потом левый операнд, потом правый, потом результат, потом выполняется присваивание, потом оба операнда и результат удаляются, сразу после использования. Всего четыре объекта. Один - временный.

А если записать в одну строку?

CInt i_test = CInt(1) + CInt(2);

Подумаем немного. Сначала левый операнд, потом правый, потом результат, потом создается объект а при помощи конструктора копирования. Всего четыре. Три по умолчанию, один копирования. Лепота.

ДА НИЧЕГО ТАКОГО! Компилятору плевать на нашу логику. Он берет результат, и превращает его в i_test. Оптимизирует. Три вызова дефолт конструктора, и ни одного временного объекта.

Я встречал этот вопрос на BrainBench и на ProveIt.

А еще давайте сравним два варианта кода:

CInt i_test = CInt(1) + CInt(2) + CInt (4) + CInt(8);

и

CInt i_test = CInt (1);

i_test+=CInt(2);

i_test+=CInt(4);

i_test+=CInt(8);

Видите? В первом варианте конструктор вызывается 7 раз, а во втором 4.

С явными вызовами конструкторов все понятно. А неявные?

CInt i_test = CInt(1) + 2;

Компилятор пытается найти подходящий оператор operator+, но его нет для примитивного int. Тогда он считает, что конструктор CInt(int) - вполне подходящий способ преобразования, и на место двойки ставит CInt(2).

Теперь раскройте оператор operator int. Хочется ожидать разумного поведения компилятора; но увы - в нашем примере этого ожидать не стоит. Есть два способа вычислить последнее выражение - и компилятор не знает что выбрать, и подыхает, как Буриданов осел между двумя кучами сена. Чтобы помочь компилятору, нужно один вариант блокировать. Как?

Не определять оператор преобразования, а определять вместо них функции, типа operator int() ‹-› asInt()

В определении конструктора использовать модификатор explicit для подавления неявных вызовов.

Использовать proxy-object - промежуточный объект наподобие курсора из Шага 16, все назначение которого - быть другим объектом когда нужно, и не быть им, когда не нужно. Словами больно заумно, проще нарисовать код.

// Класс прокси-объекта

class CProxyInt {

 friend class CInt;

private:

 int m_i;

public:

 CProxyInt (int _i): m_i(_i) {}

 int getInt () const { return m_i; }

};

// Предыдущий класс инт.

class CInt {

 friend class CProxyInt;

private:

 int m_i;

 int m_instance;

 static int iCounter;

public:

 // Конструктор по умолчанию изменен

 CInt (CProxyInt);

 CInt (const CInt&);

 ~CInt();

 CInt operator+(const CInt&);

 CInt& operator+=(const CInt&);

 CInt& operator= (const CInt&);

// operator int ();

};

int CInt::iCounter = 0;

// Реализация конструктора, вместо инта стоит прокси

CInt::CInt (CProxyInt _i=0): m_i(_i.m_i) {

 m_instance = ++iCounter;

 cout‹‹"defa constr " ‹‹ m_instance ‹‹ " "‹‹ m_i ‹‹ endl;

}

CInt a(5); // Это компилируется нормально

CInt a = 5; // А это нет. И все неявные вызовы тоже.

Видите, мы используем технику proxy уже второй раз, но совершенно в другом контексте. Общее то, что proxy применяется в том случае, если мы хотим определить свои законы преобразования типов и классов.

В этом смысле smart-указатель несомненно тоже рroxy, (уменьш. ласк. проксятник, проксятничек).

Шаг 21 - О тщете сущего.

Прежде чем использовать приемы, описанные в предыдущих Шагах, тщательно подумайте - надо ли Вам это? (Примеры с памятью еще и упрощены до свинства, не вздумайте применять в таком виде).

Средний компилятор управляет памятью примерно так, как описано в Шаге 18-19, а именно запрашивает большие куски по необходимости у операционки через calloc(), потом раздает кусочки объектам. Если объект уничтожен, то (по возможности) использует свободное место повторно. Память вернется в операционку только после того, как все объекты в ней уничтожены. Если мы будем писать свой менеджер памяти не почитав теории для начала, то вернее всего ухудшим использование памяти.

Неявные преобразования через конструкторы и операторы преобразований хороши, конечно. Но почему-то пришлось вводить ограничения на них. Чтоб неявно не вызывались. Сколь мне известно, компания Borland/Inprise собирась вводить в Delphi 4/5 перегрузку операторов, но как-то передумала…

Неявные объекты в большинстве случаев не мешают нам жить. Более того, запись в предыдущем шаге, где вызывается 7 конструкторов вместо 4, более читабельна-сопровождабельна, красива, соответствует духу и букве C++ (семантике и синтаксису). Если функция исполняется в программе раз в час, неважно, сколько раз вызовется в ней конструктор - 4 или 44. Скринсавер вообще выполняет море абсолютно бесполезных и сверхсложных вычислений - Вам это мешает?

А что касается виртуальных функций, то и MFC, и OWL, и VCL - все используют их как можно реже - на то веские причины! Если бы все функции в них были виртуальными, то с полметра памяти уходило бы в каждой программе только на поддержание виртуальных таблиц, да по лишнему указателю в каждом объекте.

Есть такое правило "80-20": 20 процентов кода вызывает 80 процентов затруднений, 20 процентов кода занимает 80 процентов процессорного времени. Возможно, оно даже сильнее - "90-10". В данном Шаге это значит - не зашивайтесь в "дешевой" части кода.

В общем, я хочу сказать - перед тем, как применять какую-то технику, оцените - какие усилия Вы затратите на ее освоение, ее поддержание, и какой результат Вы получите (ожидаете получить), и пригодятся ли Вам эти знания в будущем, что тоже важно. Программирование - всегда поиск компромисса между затратами времени, пространства и (!)труда, не забывайте что Ваш день стоит минимум как небольшой DIMM. Надеюсь.

Шаг 22 - Классы объектов, поддерживающие транзакции.

Бывает особенно приятно, когда занимаешься теорией. Занимаешься, думаешь: "ну никакой связи с жизнью, хоть бы минимум пользы"… и вдруг раз! и польза является во всей своей красе, блистая в лучах солнца и хрустя пачками денег. Что чувствовал Менделеев, когда после долгих изысканий, жутких таблиц, являвшихся ему в ночных кошмарах, вдруг получил-таки нормальную, не паленую, 40-градусную водку? Или Эйлер, когда, после терзаний и депрессий, извлек таки сопротивляющийся, визжащий и цепляющийся щупальцами и жвалами квадратный корень из минус единицы? К чему это я? А вот к чему: концепция smart-указателей может предложить простые и прозрачные решения для некоторых сложных задач; и если Вы считаете, что поддержка транзакций (а так же многоуровневой отмены и повтора) есть сложная задача, то смарты помогут Вам с замечательной легкостью.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.