Дональд Бокс - Сущность технологии СОМ. Библиотека программиста Страница 17
- Категория: Компьютеры и Интернет / Программирование
- Автор: Дональд Бокс
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 95
- Добавлено: 2019-05-29 11:55:05
Дональд Бокс - Сущность технологии СОМ. Библиотека программиста краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Дональд Бокс - Сущность технологии СОМ. Библиотека программиста» бесплатно полную версию:В этой книге СОМ исследуется с точки зрения разработчика C++. Написанная ведущим специалистом по модели компонентных объектов СОМ, она раскрывает сущность СОМ, помогая разработчикам правильно понять не только методы модели программирования СОМ, но и ее основу. Понимание мотивов создания СОМ и ее аспектов, касающихся распределенных систем, чрезвычайно важно для тех разработчиков, которые желают пойти дальше простейших приложений СОМ и стать по-настоящему эффективными СОМ-программистами. Показывая, почему СОМ для распределенных систем (Distributed СОМ) работает именно так, а не иначе, Дон Бокс дает вам возможность применять эту модель творчески и эффективно для ежедневных задач программирования.
Дональд Бокс - Сущность технологии СОМ. Библиотека программиста читать онлайн бесплатно
HRESULT QueryInterface([in] REFIID riid, [out] void **ppv);
Первый параметр (riid) является физическим именем запрошенного интерфейса. Второй параметр (ppv) указывает на переменную интерфейсного указателя, которая в случае успешного завершения будет содержать запрошенный указатель на интерфейс.
В ответ на запрос QueryInterface, если объект не поддерживает запрошенный тип интерфейса, он должен возвратить E_NOINTERFACE после установки *ppv в нулевое значение. Если же объект поддерживает запрошенный интерфейс, он должен перезаписать *ppv указателем запрошенного типа и возвратить HRESULT S_OK. Поскольку ppv является [out]-параметром, реализация QueryInterface должна выполнить AddRef для возвращаемого указателя перед тем, как вернуть управление вызывающему объекту (см. в этой главе выше руководящий принцип А2). Этот вызов AddRef должен быть согласован с вызовом Release со стороны клиента. Следующий код показывает динамическое определение типа с использованием оператора C++ dynamic_cast на примере иерархии типов Dog/Cat, описанного ранее в данной главе:
void TryToSnoreAndIgnore(/* [in] */ IUnknown *pUnk)
{
IPug *pPug = 0;
pPug = dynamic_cast<IPug*> (pUnk);
if (pPug)
// the object is Pug-compatible
// объект совместим с Pug
pPug->Snore();
ICat *pCat = 0;
pCat = dynamic_cast<ICat*>(pUnk);
if (pCat)
// the object is Cat-compatible
// объект совместим с Cat
pCat->IgnoreMaster();
}
Если объект, переданный этой функции, совместим одновременно с ICat и с IDog, то задействованы обе функциональные возможности. Если же объект в действительности не совместим с ICat или с IDog, то данная функция просто проигнорирует пропущенный аспект объекта (или оба аспекта сразу). Ниже показан семантически эквивалентный вариант с использованием QueryInterface:
void TryToSnoreAndIgnore(/* [in] */ IUnknown *pUnk)
{
HRESULT hr;
IPug *pPug = 0;
hr = pUnk->QueryInterface(IID_IPug, (void**)&pPug);
if (SUCCEEDED(hr))
{
// the object is Pug-compatible
// объект совместим с Pug
pPug->Snore();
pPug->Release();
// R2
}
ICat *pCat = 0;
hr = pUnk->QueryInterface(IID_ICat, (void**)&pCat);
if (SUCCEEDED(hr))
{
// the object is Cat-compatible
// объект совместим с Cat
pCat->IgnoreMaster();
pCat->Release(); // R2
}
}
Хотя имеются очевидные различия в синтаксисе, единственная существенная разница между двумя приведенными фрагментами кода состоит в том, что вариант, основанный на QueryInterface, подчиняется правилам подсчета ссылок СОМ.
Есть несколько тонкостей, связанных с QueryInterface и его употреблением. Метод QueryInterface может возвращать указатели только на тот же самый СОМ-объект, для которого он вызван. Глава 4 посвящена объяснению каждого нюанса этого оператора. Полезно, однако, отметить уже сейчас, что клиент не должен трактовать AddRef и Release как операции с объектом. Вместо этого следует рассматривать их как операции с указателем интерфейса. Это означает, что нижеследующий код ошибочен:
void BadCOMCode(/*[in]*/ IUnknown *pUnk)
{
ICat *pCat = 0;
IPug *pPug = 0;
HRESULT hr;
hr = pUnk->QueryInterface(IID_ICat, (void**)&pCat);
if (FAILED(hr)) goto cleanup;
hr = pUnk->QueryInterface(IID_IPug, (void**)&pPug);
if (FAILED(hr)) goto cleanup;
pPug->Bark();
pCat->IgnoreMaster();
cleanup:
if (pCat) pUnk->Release();
// pCat got AddRefed in QI
// pCat получил AddRef в QI
if (pPug) pUnk->Release();
// pDog got AddRefed in QI
// pDog получил AddRef в QI
}
Несмотря на то что все три указателя: pCat, pPug и pUnk – указывают на тот же самый объект, клиент не имеет права компенсировать AddRef, который происходит для pCat и pPug при вызове QueryInterface, вызовами Release для pUnk. Правильный вариант этого кода такой:
cleanup:
if (pCat) pCat->Release();
// use AddRefed ptr
// используем указатель AddRef
if (pPug) pPug->Release();
// use AddRefed ptr
// используем указатель AddRef
Здесь Release вызывается для того же интерфейсного указателя, для которого и AddRef (что произошло неявно, когда указатель был возвращен из QueryInterface). Это требование предоставляет разработчику значительную гибкость при реализации объекта. Например, объект может решить подсчитывать ссылки на каждый интерфейс, чтобы активным образом использовать ресурсы, которые обычно используются одним определенным интерфейсом на объект.
Еще одна тонкость относится ко второму параметру QueryInterface, имеющему тип void**. Весьма забавно то, что QueryInterface, являющийся основой системы типов СОМ, имеет довольно сомнительный в смысле типа аналог в C++:
HRESULT _stdcall QueryInterface(REFIID riid, void** ppv);
Как было отмечено ранее, клиенты вызывают QueryInterface, передавая объекту указатель на интерфейсный указатель в качестве второго параметра вместе с IID, который определяет тип ожидаемого интерфейсного указателя:
IPug *pPug = 0; hr = punk->QueryInterface(IID_IPug, (void**)&pPug);
К сожалению, для компилятора C++ таким же правильным выглядит и следующее:
IPug *pPug = 0; hr = punk->QueryInterface(IID_ICat, (void**)&pPug);
Даже еще более хитроумный вариант компилируется без ошибок:
IPug *pPug = 0; hr = punk->QueryInterface(IID_IPug, (void**)pPug);
Исходя из того, что правила наследования неприменимы к указателям, такое альтернативное определение QueryInterface нe облегчает проблему:
HRESULT QueryInterface(REFIID riid, IUnknown** ppv);
так как неявное приведение типа к родительскому типу (upcasting) применимо только к объектам и указателям на объекты, а не к указателям на указатели на объекты:
IDerived **ppd; IBase **ppb = ppd;
// illegal
// неверно
To же ограничение применимо в равной мере и к ссылкам на указатели. Следующее альтернативное определение вряд ли более удобно для использования клиентами:
HRESULT QueryInterface(const IID& riid, void* ppv);
так как позволяет клиентам отказаться от приведения типа (cast). К сожалению, это решение не уменьшает количества ошибок (обе из предшествующих ошибок все еще возможны), а устраняя необходимость приведения, уничтожает и видимый индикатор того, что устойчивость типов C++ может оказаться в опасности. Если желательна семантика QueryInterface, то выбор типов аргументов, сделанный корпорацией Microsoft, по крайней мере, разумен, если не надежен или изящен. Простейший путь избежать ошибок, связанных c QueryInterface,– это всегда быть уверенным в том, что IID соответствует типу указателя интерфейса, который проходит как второй параметр QueryInterface. На самом деле первый параметр QueryInterface описывает «форму» типа указателя второго параметра. Их связь может быть усилена на этапе компиляции с помощью такого макроса предпроцессора С:
#define IID_PPV_ARG(Type, Expr) IID_##type,
reinterpret_cast<void**>(static_cast<Type **>(Expr))
С помощью этого макроса[1] компилятор будет уверен в том, что выражение, использованное в приведенном ниже вызове QueryInterface, имеет правильный тип и что используется соответствующий уровень изоляции (indirecton):
IPug *pPug = 0; hr = punk->QueryInterface(IID_PPV_ARG(IPug, &pPug));
Этот макрос закрывает брешь, вызванную параметром void**, без каких-либо затрат на этапе выполнения.
Реализация IUnknown
Имея описанные выше образцы клиентского использования, легко видеть, как реализовать методы IUnknown. Примем предложенную выше иерархию типов Dog/Cat. Чтобы определить С++-класс, который реализует интерфейсы IPug и ICat , нужно просто добавить к списку базовых классов самые последние в иерархии наследования версии интерфейсов:
class PugCat : public IPug, public ICat
При использовании наследования компилятор C++ обеспечивает совместимость двоичного представления производного класса с каждым базовым классом. Для класса PugCat это означает, что все объекты PugCat будут содержать указатель vptr, указывающий на таблицу vtbl, совместимую с IPug. Объекты PugCat также будут содержать указатель vptr, указывающий на вторую таблицу vtbl, совместимую с ICat. Рисунок 2.5 показывает, как интерфейсы в качестве базовых классов соотносятся с представлением объектов.
Поскольку все функции-члены в СОМ-определениях интерфейса являются чисто виртуальными, производный класс должен обеспечивать реализацию каждого метода, имеющегося в любом из его интерфейсов. Методы, общие для двух или более интерфейсов (например, QueryInterface, AddRef и т. д.) нужно реализовывать только один раз, так как компилятор и компоновщик инициализируют все таблицы vtbl так, чтобы они указывали на одну реализацию метода. Таков естественный побочный эффект от использования множественного наследования в языке C++.
Следующий код является определением класса, которое создает объекты, поддерживающие интерфейсы IPug и ICat:
class PugCat : public IPug, public ICat
{
LONG mcRef;
protected:
virtual ~PugCat(void);
public: PugCat(void);
// IUnknown methods
// методы IUnknown
STDMETHODIMP QueryInterface(REFIID riid, void **ppv);
STDMETHODIMP(ULONG) AddRef(void);
STDMETHODIMP(ULONG) Release(void);
// IAnimal methods
// методы IAnimal
Жалоба
Напишите нам, и мы в срочном порядке примем меры.