Питон - модули, пакеты, классы, экземпляры (СИ) - Бройтман Олег Страница 2

Тут можно читать бесплатно Питон - модули, пакеты, классы, экземпляры (СИ) - Бройтман Олег. Жанр: Компьютеры и Интернет / Программирование. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Питон - модули, пакеты, классы, экземпляры (СИ) - Бройтман Олег

Питон - модули, пакеты, классы, экземпляры (СИ) - Бройтман Олег краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Питон - модули, пакеты, классы, экземпляры (СИ) - Бройтман Олег» бесплатно полную версию:

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.

Питон - модули, пакеты, классы, экземпляры (СИ) - Бройтман Олег читать онлайн бесплатно

Питон - модули, пакеты, классы, экземпляры (СИ) - Бройтман Олег - читать книгу онлайн бесплатно, автор Бройтман Олег

Объектно-ориентированное программирование

Питон - объектно-ориентированный язык со множественным наследованием. Можно сказать, что Питон поддерживает классическую ОО-модель с некоторыми особенностями. Классы в Python могут иметь статические переменные, разделяемые всеми экземплярами класса, но не могут иметь статических методов. Все методы относятся к экземплярам класса. Все методы можно переопределять в наследниках. Ссылка на объект (экземпляр класса) передается в методы в явном виде, в первом параметре. Традиционно эту переменную называют self. Какого-то общего предка всех классов (типа Object) в Python нет. Вообще в ОО-программировании в Питоне важно не кто от кого наследуется, а какой поддерживается интерфейс; наследование лишь дает реализацию. Формальных механизмов проверки интерфейсов пока нет, но возможно они будут включены в язык и библиотеки; Zope делает шаги в этом направлении.

Конструктор и деструктор класса называются __init__ и __del__ (встроенные и служебные имена в Питоне обозначаются двумя подчеркиваниями перед и после имени; это всего лишь соглашение, язык не запрещает программисту писать собственные методы с такими именами). Вернее было бы назвать эти методы initializer и finalizer - они сами не размещают и не освобождают память (это делает за них интерпретатор), они инициализируют и очищают свои переменные.

В Питоне нет отдельного оператора new для создания экземпляров класса. Для создания экземпляра класса вызывается класс с необходимыми параметрами. Эти параметры передаются в __init__. Метод __del__, конечно, вызывается без параметров (кроме, естественно, self). Для удаления объектов (и не только экземпляров классов) в Питоне есть оператор del.

Пример.

class Foo:

bar = "baz"

def __init__(self, foo):

self.foo = foo

def __del__(self):

del self.foo

foo = Foo(12)

del foo

Описание класса создает новое пространство имен, в котором определяются статические переменные (в нашем примере это bar) и методы. Создание экземпляра порождает пространство имен объекта, доступ к которому осуществляется через переменную экземпляра класса foo, а внутри методов класса - через переменную self.

Классы в Питоне позволяют программисту создавать новые типы данных и определять для них все операции, доступные для встроенных типов. Например, метод __getitem__ позволяет индексировать объект, а __setitem__ - присваивать индексу объекта. Метод __getitem__ также позволяет объекту участвовать в цикле for, эмулируя последовательность (sequence). Есть методы, позволяющие объекту эмулировать булевские значения и участвовать в операторах if и while. Методы __getattr__ и __setattr__ позволяют читать и писать атрибуты объектов. Метод __call__ позволяет вызывать экземпляр класса с параметрами!

Python позволяет переопределить все инфиксные операции, причем отдельно для левого и правого аргумента выражения. Например, если a - экземпляр класса A, и b - экземпляр класса B, то для вычисления выражения a + b Питон будет сначала искать метод __add__ в классе A, а если не найдет - то метод __radd__ в классе B (а если и там не найдет - возбудит исключение TypeError).

Многие программисты, особенно писавшие на C++, боятся и не любят множественного наследования. Авторы языка Java вообще не включили множественное наследование в язык. Совершенно напрасно! Python позволяет использовать множественное наследование весьма успешно и удобно. Множественное наследование облегчает переиспользование кода (code reuse) вместо copy/paste-программирования, что очень важно и для эффективности, и для читаемости программ, и для отладки. Часто программисты на Питоне создают класс с помощью множественного наследования из нескольких связанных между собой "кирпичиков", словно из конструктора. Такие "кирпичики" в ОО-программировании называются MixIn-классами. Подробную статью про программирование с помощью MixIn-классов можно прочесть в Linux Journal

Еще один способ использования классов (точнее, экземпляров), не связанный непосредственно с ОО-программированием - использование пространства имен, которое предоставляет объект. Рассмотрим следующую проблему. Вам надо пройти циклом по списку, сохраняя между итерациями цикла некоторую информацию. Это можно сделать циклом for, никаких проблем. А можно воспользоваться возможностями функционального программирования, которые есть в Питоне - функциями map, filter, reduce и тому подобное. Эти функции требую в качестве первого параметра функцию, которую они в процессе цикла вызывают. Это эффективнее, чем цикл for (эти функции-то написаны на C), но возникает проблема с хранением состояния между итерациями. Функция, которую вызывает map может хранить состояние только в глобальных переменных. Для простых программ это вполне приемлемо. Но вот, скажем, с многопоточными программами будут проблемы - необходимо запирать и синхронизировать доступ к глобальным переменным. Да и вообще к глобальным переменным надо обращаться только при крайней нужде.

Вот тут на помощь приходит дополнительное пространство имен, существующее в экземпляре класса. Создадим класс

class Process:

def __init__(self):

self.foo = 0

def __call__(self, v):

if self.foo > 100:

raise OverflowError

self.foo += v

return self.foo

Создадим экземпляр этого класса: p = Process(), и передадим этот объект в map вместо функции: result = map(p, sequence). Функция map, ничего не подозревая, будет вызывать переданный ей объект как функцию с одним параметром. Никаких проблем - мы так описали класс, что его экземпляры можно вызывать, и именно с одним параметром! И от итерации к итерации объект p сохраняет необходимое состояние.

Другой похожий пример:

class Process:

def __init__(self):

self.sum = 0

def add(self, v):

self.sum += v

return self.sum

p = Process()

result = map(p.add, sequence)

print p.sum

Вся разница в этом примере - мы передаем не объект p, а его метод p.add. Но что такое p.add? В Python это особая сущность, называемая BoundMethod. Это объект, который помнит адрес объекта p, адрес функции add класса Process, и, когда его вызывают, в свою очередь вызывает метод класса с правильным первым параметром self. Если обратиться к этому методу как Process.add, то это - UnboundMethod, и его надо вызывать, подставив все параметры в явном виде: Process.add(p, 1). Вызов в таком виде часто используется для вызова родительского конструктора или метода:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.