Джесс Либерти - Освой самостоятельно С++ за 21 день. Страница 26

Тут можно читать бесплатно Джесс Либерти - Освой самостоятельно С++ за 21 день.. Жанр: Компьютеры и Интернет / Программирование, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Джесс Либерти - Освой самостоятельно С++ за 21 день.

Джесс Либерти - Освой самостоятельно С++ за 21 день. краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Джесс Либерти - Освой самостоятельно С++ за 21 день.» бесплатно полную версию:
В книге широко представлены возможности новейшей версии программного продукта Microsoft Visual C++. Подробно описаны средства и подходы программирования современных профессиональных приложений. Материалы книги дополнены многочисленными демонстрационными программами, в процессе разработки которых максимально используются возможности программных инструментов Microsoft Visual Studio. Особое внимание уделено новинкам версии 6.0 и новейшим технологиям объектно-ориентированного программирования, включая использование библиотеки MFC и шаблонов классов, а также создание связанных списков. Отдельное занятие посвящено вопросам объектно-ориентированного анализа и проектирования приложений. Подробно рассмотрены все средства и подходы конструирования собственных пользовательских классов.Книга рассчитана на широкий круг читателей, интересующихся современными проблемами программирования.

Джесс Либерти - Освой самостоятельно С++ за 21 день. читать онлайн бесплатно

Джесс Либерти - Освой самостоятельно С++ за 21 день. - читать книгу онлайн бесплатно, автор Джесс Либерти

Обратите внимание, что использование подставляемых функций чревато и некоторыми издержками. Если функция вызывается 10 раз, то во время компиляции в программу будет вставлено 10 копий этой функции. За увеличение скорости выполнения программы нужно будет расплатиться размерами программного кода, в результате чего ожидаемого повышения эффективности программы может и не произойти.

Так какой же напрашивается вывод? Если в программе часто вызывается маленькая функция, состоящая из одной-двух строк, то это первый кандидат в подставляемые функции. Но если функция велика, то лучше воздержаться от ее многократного копирования в программе. Использование подставляемой функции демонстрируется в листинге 5.9.

Листинг 5.3. Использование подставляемых inline-функций

1: // Листинг 5.9. Подставляемые inline-функции

2:

3: <<include <iostгеагп.h>

4:

5: inline mt Double(int);

6:

7: int main()

8: {

9: int target;

10:

11:   cout << "Enter а number to work with:

12:   cin >> target;

13:   cout << "\n";

14:

15:   target = Double(target);

16:   cout << "Target: " << target << endl.

17:

18:   target = Double(target):

19:   coul << "Target: " << target << endl;

20:

21:

22:   target = Double(target):

23:   cout << "Target: " << target << endl;

24:   return 0;

25: }

26:

27: int Double(int target)

28: {

29:    return 2'target;

20: }

Результат:

Enter a number to work with: 20

Target: 40

Target: 80

Target: 160

Анализ: В строке 5 объявляется подставляемая функция Double(), принимающая параметр типа int и возвращающая значение типа int. Это объявление подобно любому другому прототипу за исключением того, что прямо перед типом возвращаемого значения стоит ключевое слово inline.

Результат компиляции этого прототипа равносилен замене в программе строки:

target = 2 * target;

вызовом функции Double():

target = Double(target);

К моменту выполнения программы копии функции уже расставлены по своим местам и программа готова к выполнению без частых переходов к функции и обратно.

Примечание:  Ключевое слово inline служит для компилятора рекомендацией пользователя скопировать код функции в программу по месту вызова. Компилятор волен проигнорировать ваши рекомендации и сохранить обычное обращение к функции.

Рекурсия

Функция может вызывать самое себя. Это называется рекурсией, которая может быть прямой или косвенной. Когда функция вызывает самое себя, речь идет о прямой рекурсии. Если же функция вызывает другую функцию, которая затем вызывает первую, то в этом случае имеет место косвенная рекурсия.

Некоторые проблемы легче всего решаются именно с помощью рекурсии. Так рекурсия полезна в тех случаях, когда выполняется определенная процедура над данными, а затем эта же процедура выполняется над полученными результатами. Оба типа

рекурсии (прямая и косвенная) выступают в двух амплуа: одни в конечном счете заканчиваются и генерируют возврат, а другие никогда не заканчиваются и генерируют ошибку времени выполнения. Программисты считают, что последний вариант весьма забавен (конечно же, когда он случается с кем-то другим).

Важно отметить, что, когда функция вызывает самое себя, выполняется новая копия этой функции. При этом локальные переменные во второй версии независимы от локальных переменных в первой и не могут непосредственно влиять друг друга, по крайней мере не больше, чем локальные переменные в функции main() могут влиять на локальные переменные в любой другой функции, которую она вызывает, как было показано в листинге 5.4.

Чтобы показать пример решение проблемы с помощью рекурсии, рассмотрим ряд Фибоначчи:

1,1,2,3,5,8,13,21,34...

Каждое число ряда (после второго) представляет собой сумму двух стоящих впереди чисел. Задача может состоять в том, чтобы, например, определить 12-й член ряда Фибоначчи.

Один из способов решения этой проблемы лежит в тщательном анализе этого ряда. Первые два числа равны 1. Каждое последующее число равно сумме двух предыдущих. Таким образом, семнадцатое число равно сумме шестнадцатого и пятнадцатого. В общем случае n-e число равно сумме (n-2)-го и (n-l)-го при условии, если n > 2.

Для рекурсивных функций необходимо задать условие прекращения рекурсии. Обязательно должно произойти нечто, способное заставить программу остановить рекурсию, или же она никогда не закончится. В ряду Фибоначчи условием останова является выражение n < 3.

При этом используется следующий алгоритм:

   1. Предлагаем пользователю указать, какой член в ряду Фибоначчи следует рассчитать.

   2. Вызываем функцию fib(), передавая в качестве аргумента порядковый номер члена ряда Фибоначчи, заданный пользователем.

   3. В функции fib() выполняется анализ аргумента (n). Если n < 3, функция возвращает значение 1; в противном случае функция fib() вызывает самое себя (рекурсивно), передавая в качестве аргумента значение n-2, затем снова вызывает самое себя, передавая в качестве аргумента значение п-1, а после этого возвращает сумму.

Если вызвать функцию fib(1), она возвратит 1. Если вызвать функцию fib(2), она также возвратит 1. Если вызвать функцию fib(3), она возвратит сумму значений, возвращаемых функциями fib(2) и fib(l). Поскольку вызов функции fib(2) возвращает значение 1 и вызов функции fib(1) возвращает значение 1,то функция fib(3) возвратит значение 2.

Если вызвать функцию fib(4), она возвратит сумму значений, возвращаемых функциями fib(3) и fib(2). Мы уже установили, что функция fib(3) возвращает значение 2 (путем вызова функций fib(2) и fib(1)) и что функция fib(2) возвращает значение 1, поэтому функция fib(4) просуммирует эти числа и возвратит значение 3, которое будет являться четвертым членом ряда Фибоначчи.

Сделаем еще один шаг. Если вызвать функцию fib(5), она вернет сумму значений, возвращаемых функциями fib(4) и fib(3). Как мы установили, функция fib(4) возвращает значение 3, а функция fib(3) — значение 2, поэтому возвращаемая сумма будет равна числу 5.

Описанный метод — не самый эффективный способ решения этой задачи (при вызове функции fib(20) функция fib() вызывается 13 529 раз!), тем не менее он работает. Однако будьте осторожны. Если задать слишком большой номер члена ряда Фибоначчи, вам может не хватить памяти. При каждом вызове функции fib() резервируется некоторая область памяти. При возвращении из функции память освобождается. Но при рекурсивных вызовах резервируются все новые области памяти, а при таком подходе системная память может исчерпаться довольно быстро. Реализация функции fib() показана в листинге 5.10.

Предупреждение: При запуске программы, представленной в листинге 6.10, задавайте небольшие номера членов ряда Фибоначчи (меньше 15). Поскольку в этой программе используется рекурсия, возможны большие затраты памяти.

Листинг 5.10. Пример использования рекурсии для нахождения члена ряда Фибоначчи

1: #include <iostream.h>

2:

3: int fib (int n);

4:

5: int main()

6: {

7:

8:    int n, answer;

9:    cout << "Enter number to find: "; 10: cin >> n;

10:

11:   cout << "\n\n";

12:

13:   answer = fib(n);

14:

15:   cout << answer << " is the " << n << "th Fibonacci number\n"; 17: return 0,

16: }

17:

18: int fib (int n)

19: {

20:    cout << "Processing fib(" << n << ")... "; 23:

21:    if (n < 3 )

22:    {

23:       cout << "Return 1!\n";

24:       return (1);

25:    }

26:    else

27:    {

28:       cout << "Call fib(" << n-2 << ") and fib(" << n-1 << ").\n";

29:       return( fib(n-2) + fib(n-l));

30:    }

31: }

Результат:

Enter number lo find: 6

Processing fib(6)... Call fib(4) and fib{S)

Processing fib(4)... Call fit>(2) and fib(3)

Processing fib(2)... Return 1! 

Processing fib(3)... Call fib(l) and fiO<2)

Processing fib(D... Return 1! 

Processi ng fib(2)... Return 1! 

Processing fib(5)... Call fib(3) and fib{4)

Processing fib(3}... Call fib(1) and fib(2)

Processing flb(1)... Return 1!

Processi ng fib(2)... Return 1!

Processing fib(4)... Call fib(2) and fib(3)

Processing fib(2)... Return 1! 

Processing fib(3)... Call fib(1) and fib(2)

Processing fib(l)... Return 1! 

Processing fib(2)... Return 1! 

8 is the 6th Fibonacci number

Примечание:Некоторые компиляторы испытывают затруднения с использованием операторов в выражениях с объектом cout. Если вы получите предупреждение в строке 28, заключите операцию вычитания в круглые скобки, чтобы строка 28 приняла следующий вид:

28: cout << "Call fib(" << (n-2) << ") and fib(" << n-1 << ").\n";

Анализ: В строке 9 программа предлагает ввести номер искомого члена ряда и присваивает его переменной n. Затем вызывается функция fib() с аргументом n. Выполнение программы переходит к функции fib(), где в строке 20 этот аргумент выводится на экран.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.