Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi Страница 30
- Категория: Компьютеры и Интернет / Программирование
- Автор: Джулиан Бакнелл
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 119
- Добавлено: 2019-05-29 11:02:54
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi» бесплатно полную версию:Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi читать онлайн бесплатно
Если массив не отсортирован, для поиска определенного элемента может использоваться только один единственный алгоритм: выбирать каждый элемент массива и сравнивать его с искомым. Как правило, такой алгоритм реализуется с помощью цикла For. В качестве примера давайте выполним поиск значения 42 в массиве из 100 целых чисел:
var
MyArray : array[0..99] of integer;
Inx : integer;
begin
for Inx := 0 to 99 do
if MyArray[Inx] = 42 then
Break;
if (Inx = 100) then
.. значение 42 не было найдено ..
else
.. значение 42 было найдено в элементе с индексом Inx ..
Довольно просто, не правда ли? Код выполняет цикл по всем элементам массива, начиная с первого и заканчивая последним, используя Break для выхода из цикла при обнаружении первого элемента, значение которого равно искомому 42. (Оператор Break очень удобно использовать, здесь он ничем не отличается от оператора goto.) После цикла, для того чтобы определить, найден ли элемент, проверяется значение счетчика цикла Inx.
Интересно, сколько читателей в приведенном выше коде нашли ошибку? Проблема заключается в том, что в языке Object Pascal при успешном завершении цикла значение переменной цикла будет не определено. С другой стороны, в случае преждевременного завершения цикла, скажем, с помощью оператора Break, значение переменной цикла будет определено.
В коде предполагается, что перемененная цикла Inx после завершения цикла будет на 1 больше конечного значения для цикла For, даже если цикл будет выполнен успешно. Оказывается, что в 32-разрядных компиляторах (в версиях Delphi от 2 до 7) ошибки не возникает: значение переменной цикла после завершения цикла будет на 1 больше, чем при последнем выполнении цикла. В Delphi 1 код будет работать неправильно: после завершения выполнения цикла переменная цикла будет содержать значение, равное своему значению при последнем выполнении цикла (в нашем примере Inx после полного выполнения цикла будет содержать 99). Кто знает, что будет в следующих версиях Delphi? Вполне возможно, что в будущих версиях Delphi будет изменен оптимизатор компилятора, и переменная цикла после завершения цикла будет получать другое значение. В конце концов, разработчики, описав поведение переменной цикла, оставили за собой право изменения ее значения после выхода из цикла.
Тогда каким образом можно реализовать алгоритм последовательного поиска? Цикл For можно использовать (это самый быстрый метод организации последовательного поиска), однако потребуется ввести флаг, который будет указывать, найден ли искомый элемент. Код несколько усложнится, но зато становится корректным с точки зрения языка программирования:
var
MyArray : array[0..99] of integer;
Inx : integer;
FoundIt : boolean;
begin
FoundIt := false;
for Inx := 0 to 99 do
if MyArray[Inx] = 42 then begin
FoundIt := true;
Break;
end;
if not FoundIt then
.. значение 42 не было найдено ..
else
.. значение 42 было найдено в элементе с индексом Inx ..
А теперь рассмотрим функцию поиска элемента в массиве TList с помощью функции сравнения (ее реализацию можно найти в файле TDTList.pas на Web-сайте издательства, в разделе сопровождающих материалов). Если искомый элемент не найден, функция возвращает -1, в противном случае возвращается индекс элемента.
Листинг 4.5. Последовательный поиск в несортированном массиве TList
function TDTListIndexOf(aList : TList; aItem : pointer;
aCompare : TtdCompareFunc) : integer;
var
Inx : integer;
begin
for Inx := 0 to pred(aList.Count) do
if (aCompare(aList.List^[Inx], aItem) = 0) then begin
Result := Inx;
Exit;
end;
{если мы попали сюда, значит искомый элемент не найден}
Result := -1;
end;
Эта функция работает не так как метод TList.IndexOf, который предназначен для поиска элемента в массиве путем сравнения значений указателей. Фактически он в своем внутреннем списке указателей осуществляет поиск элемента как указателя. С другой стороны, функция TDTListIndexOf осуществляет поиск самого элемента, вызывая для сравнения искомого и текущего элемента функцию сравнения. Функция сравнения может сравнивать просто значения указателей или преобразовывать указатели во что-нибудь более значимое, например, в класс или запись, а затем сравнивать поля.
Обратите внимание, что в реализации функции с целью повышения эффективности применяется небольшая хитрость. Вместо сравнения aItem с aList[Inx] выполняется сравнение с aList.List^[Inx]. Зачем? Компилятор преобразовывает первое сравнение в вызов функции, а затем вызываемая функция, TList.Get, перед возвратом указателя из внутреннего массива указателей проверяет переданный ей индекс на предмет попадания в диапазон от 0 до количества элементов (вызывая исключение, если условие не соблюдается). Но мы знаем, что индекс находится в требуемом диапазоне, поскольку используется цикл от 0 до количества элементов минус 1. Поэтому нам не нужно считывать значение свойства Items и вызывать метод TList.Get. Можно получить доступ непосредственно к массиву указателей (свойство List экземпляра TList).
-----
Эта хитрость (использование свойства List экземпляра TList) вполне корректна. Если вы уверены, что значения индекса не выходят за пределы допустимого диапазона, можно исключить проверку на предмет попадания в диапазон за счет непосредственного доступа к массиву ListItems. Тем не менее, ее применение при итерации по массиву TList или в коде, который может привести к выходу индекса за пределы допустимого диапазона, не желательно. Лучше обезопасить себя, нежели потом сожалеть.
-----
В классе TtdRecordList (который описан в главе 2) для организации последовательного поиска можно пользоваться методом IndexOf (см. листинг 4.6).
Листинг 4.6. Последовательный поиск с помощью метода TtdRecordList.IndexOf
function TtdRecordList.IndexOf(aItem : pointer;
aCompare : TtdCompareFunc) : integer;
var
ElementPtr : PAnsiChar;
i : integer;
begin
ElementPtr := FArray;
for i := 0 to pred(Count) do begin
if (aCompare(aItem, ElementPtr) = 0) then begin
Result := i;
Exit;
end;
inc(ElementPtr, FElementSize);
end;
Result := -1;
end;
Как видите, время выполнения алгоритма последовательного поиска напрямую зависит от количества элементов в массиве. В лучшем случае мы можем найти требуемый элемент с первой попытки (если он будет первым в массиве), но вполне вероятно, что мы обнаружим его в самом конце, после просмотра всех элементов. В среднем для массива размером n для обнаружения искомого элемента придется пройти n/2 элементов. В любом случае, если искомого элемента нет в массиве, будут просмотрены все n элементов. Таким образом, операция последовательного поиска принадлежит к классу O(n).
А что можно сказать о сортированном массиве? Первое, что следует отметить, - простой алгоритм последовательного поиска в отсортированном массиве будет работать ничуть не хуже (или не лучше, в зависимости от вашей точки зрения), чем в несортированном. Операция поиска будет принадлежать к классу O(n).
Тем не менее, алгоритм поиска можно улучшить. Если искомого элемента нет в массиве, поиск можно выполнить намного быстрее. Фактически мы выполняем итерации по массиву, как и раньше, но теперь только до тех пор, пока не будет найден элемент, больший или равный искомому. Если обнаружен элемент, равный искомому, поиск завершается успешно. Если же обнаружен элемент больше искомого, значит, искомый элемент в массиве отсутствует, поскольку массив отсортирован, а мы дошли до элемента большего, чем искомый. Все последующие элементы также будут больше искомого. Следовательно, поиск можно прекратить.
Листинг 4.7. Последовательный поиск в отсортированном массиве TList
function TDTListSortedIndexOf(aList : TList; aItem : pointer;
aCompare : TtdCompareFunc) : integer;
var
Inx, CompareResult : integer;
begin
{искать первый элемент больший или равный элементу aItem}
for Inx := 0 to pred(aList.Count) do begin
CompareResult := aCompare(aList.List^[Inx], aItem);
if (CompareResult >= 0) then begin
if (CompareResult = 0) then
Result := Inx
else
Result := -1;
Exit;
end;
end;
{если мы попали сюда, значит искомый элемент не найден}
Result := -1;
end;
Обратите внимание, что функция сравнения вызывается только один раз при каждом выполнении цикла. Мы не знаем, что делает функция aCompare - для нас это "черный ящик". Следовательно, желательно ее вызывать как можно реже. Поэтому при каждом выполнении цикла мы вызываем ее только один раз и сохраняем полученный результат в переменной целого типа. После этого переменную можно использовать сколько угодно раз, не вызывая функцию.
Как уже говорилось, приведенная функция поиска нисколько не увеличивает скорость обнаружения искомого элемента, если искомый элемент присутствует в массиве (в среднем, как и ранее, для этого потребуется провести n/2 сравнений). Единственным ее преимуществом перед предыдущей функцией является то, что при отсутствии искомого элемента в массиве результат будет получен быстрее. Скоро мы рассмотрим алгоритм бинарного поиска, который позволит повысить быстродействие в обоих случаях.
Связные списки
В связных списках последовательный поиск выполняется точно так же, как и в массивах. Тем не менее, элементы проходятся не по индексу, а по указателю Next. Для класса TtdSingleLinkList, описанного в главе 3, можно разработать две следующих функции: первая - для выполнения поиска по несортированному связному списку, и вторая - по отсортированному. Функции просто указывают, найден ли искомый элемент. В случае, если элемент найден, список будет установлен в позицию искомого элемента. В функции для отсортированного списка курсор будет установлен в позицию, где должен находиться искомый элемент, чтобы список оставался отсортированным.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.