Иван Братко - Программирование на языке Пролог для искусственного интеллекта Страница 37

Тут можно читать бесплатно Иван Братко - Программирование на языке Пролог для искусственного интеллекта. Жанр: Компьютеры и Интернет / Программирование, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Иван Братко - Программирование на языке Пролог для искусственного интеллекта

Иван Братко - Программирование на языке Пролог для искусственного интеллекта краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Иван Братко - Программирование на языке Пролог для искусственного интеллекта» бесплатно полную версию:
Книга известного специалиста по программированию (Югославия), содержащая основы языка Пролог и его приложения для решения задач искусственного интеллекта. Изложение отличается методическими достоинствами — книга написана в хорошем стиле, живым языком. Книга дополняет имеющуюся на русском языке литературу по языку Пролог.Для программистов разной квалификации, специалистов по искусственному интеллекту, для всех изучающих программирование.

Иван Братко - Программирование на языке Пролог для искусственного интеллекта читать онлайн бесплатно

Иван Братко - Программирование на языке Пролог для искусственного интеллекта - читать книгу онлайн бесплатно, автор Иван Братко

...

Цель = [Функтор | Списарг],

саll( Цель)

Иногда нужно извлечь из терма только его главный функтор или один из аргументов. В этом случае можно, конечно, воспользоваться отношением '=..'. Но более аккуратным и практичным, а также и более эффективным способом будет применение одной из двух новых встроенных процедур: functor и аrg. Вот их смысл: цель

functor( Терм, F, N)

истинна, если F — главный функтор Tepм'a, а N — арность F. Цель

arg( N, Терм, А)

истинна, если А — N-й аргумент в Терм'е, в предположении, что нумерация аргументов идет слева направо и начинается с 1. Примеры для иллюстрации:

?- functor( t( f( x), X, t), Фун, Арность).

Фун = t

Арность = 3

?- аrg( 2, f( X, t( a), t( b) ), Y).

Y = t( a)

?- functor( D, дата, 3),

arg( 1, D, 29),

arg( 2, D, июнь),

arg( 3, D, 1982).

D = дата( 29, июнь, 1982)

Последний пример иллюстрирует особый случай применения предиката functor. Цель functor( D, дата, 3) создает "обобщенный" терм с главным функтором дата и тремя аргументами. Этот терм обобщенный, так как все три его аргумента — не конкретизированные переменные, чья имена генерируются пролог-системой. Например:

D = дата( _5, _6, _7)

Затем эти три переменные конкретизируются при помощи трех целей аrg.

К рассматриваемому множеству встроенных предикатов относится также и введенный в гл. 6 предикат name, предназначенный для синтеза и декомпозиция атомов. Для полноты изложения мы здесь напомним его смысл. Цель

name( A, L)

истинна, если L — список кодов (в кодировке ASCII) символов, входящих в состав атома А.

Упражнения

7.3. Определите предикат конкрет(Терм) так, чтобы он принимал значение истина, когда в Tepм'e нет ни одной неконкретизированной переменной.

7.4. Процедура подставить из данного раздела производит, при наличии разных вариантов, лишь самую "внешнюю" подстановку.

Модифицируйте эту процедуру так, чтобы она находила все возможные варианты при помощи автоматического перебора. Например:

?- подставить( a+b, f( A+B), новый, НовыйТерм).

А = а

В = b

НовыйТерм = f( новый);

А = а+b

В = а+b

НовыйТерм = f( новый + новый)

Наша исходная версия нашла бы только первый из этих двух ответов.

7.5. Определите отношение

включает( Tepм1, Терм2)

которое выполняется, если Терм1 является более общим, чем Терм2. Например:

?- включает( X, с).

yes

?- включает( g( X), g( t( Y))).

yes

?- включает f( X,X), f( a,b)).

no

7.3. Различные виды равенства

В каких случаях мы считаем, что два терма равны? До сих пор мы рассматривали три вида равенства в Прологе. Первый был связан с сопоставлением и записывался так:

X = Y

Это равенство верно, если X и Y сопоставимы. Следующий вид равенства записывался в виде

X is E

Такое равенство выполняется, если X сопоставим со значением арифметического выражения E. Мы также рассматривали равенства вида

Е1 =:= Е2

которые верны, если равны значения арифметических выражений Е1 и Е2. Наоборот, если значения двух арифметических выражений не равны, мы пишем

Е1 =/= Е2

Иногда нам может понадобиться более строгий вид равенства - буквальное равенство двух термов. Этот вид реализован еще одним встроенным предикатом, записываемым как инфиксный оператор '==':

Т1 == Т2

Это равенство выполняется, если термы Т1 и Т2 идентичны, т.е. имеют в точности одинаковую структуру, причем все соответствующие компоненты совпадают. В частности, должны совпадать и имена переменных. Отношение "не идентичны", дополнительное к данному, записывается так:

T1 \== T2

Приведем несколько примеров:

?- f( a, b) == f( а, b).

yes

?- f( a, b) == f( a, X).

?- f( a, X) == f( a, Y).

no

?- X \== Y.

yes

?- t( X, f( a, Y) ) == t( X, f( a, Y) ).

yes

Давайте в качестве примера переопределим отношение

счетчик( Терм, Список, N)

из разд. 7.1. Пусть на этот раз N будет числом буквальных вхождений Терм'а в Список:

счетчик( _, [], 0).

счетчик( Терм, [Голова | L], N) :-

 Терм == Голова, !,

 счетчик( Терм, L, N1),

 N is N1 + 1;

счетчик( Терм, L, N). 

7.4. Работа с базой данных

Реляционная модель предполагает, что база данных — это описание некоторого множества отношений. Пролог-программу можно рассматривать как именно такую базу данных: описание отношений частично присутствует в ней в явном виде (факты), а частично — в неявном (правила). Более того, встроенные предикаты дают возможность корректировать эту базу данных в процессе выполнения программ. Это делается добавлением к программе (в процессе вычисления) новых предложений или же вычеркиванием из нее уже существующих. Предикаты, используемые для этой цели, таковы: assert (добавить), asserta, assertz и retract (удалить).

Цель

assert( С)

всегда успешна, а в качестве своего побочного эффекта вызывает "констатацию" предложения С, т.е. добавление его к базе данных.

Цель

retract( С)

приводит к противоположному эффекту: удаляет предложение, сопоставимое с С. Следующий диалог иллюстрирует их работу:

?- кризис.

no

?- assert( кризис).

yes

?- кризис.

yes

?- retract( кризис).

yes

?- кризис.

no

Предложения, добавленные к программе таким способом, ведут себя точно так же, как и те, что были в "оригинале" программы. Следующий пример показывает, как с помощью assert и retract можно работать в условиях изменяющейся обстановки. Предположим, что у нас есть такая программа о погоде:

хорошая :-

 солнечно, not дождь.

необычная :-

 солнечно, дождь.

отвратительная :-

 дождь, туман.

дождь.

туман.

Ниже приводится пример диалога с этой программой, во время которого база данных постепенно изменяется:

?- хорошая.

no

?- отвратительная.

yes

?- retract( туман).

yes

?- отвратительная.

no

?- assert( солнечно).

yes

?- необычная.

yes

?- retract( дождь).

yes

?- хорошая.

yes

Добавлять и удалять можно предложения любой формы. Следующий пример показывает, что, кроме того, retract может работать недетерминировано: используя механизм возвратов с помощью только одной цели retract можно удалить целое множество предложений. Предположим, что в программе, с которой мы "консультируемся", есть такие факты:

быстр( энн).

медл( том).

медл( пат).

К этой программе можно добавить правило:

?- assert(

 ( быстрее( X, Y) :-

   быстр( X), медл( Y) ) ).

yes

?- быстрее( А, В).

А = энн

В = том

?- retract( медл( X) ).

X = том;

X = пат;

?- быстрее( энн, _ ).

Заметьте, что при добавлении нового правила синтаксис требует, чтобы оно (как аргумент assert) было заключено в скобки.

При добавлении нового предложения может возникнуть желание указать, на какое место в базе данных его следует поместить. Такую возможность обеспечивают предикаты asserta и assertz. Цель

asserta( С)

помещает С в начале базы данных. Цель

assertz( С)

— в конце. Вот пример, иллюстрирующий работу этих предикатов:

?- assеrt( p( a)), assertz( p( b) ), asserta( p( c) ).

yes

?- p( X).

X = с;

X = а;

X = b

Между consult и assertz существует связь. Обращение к файлу при помощи consult можно в терминах assertz определить так: считать все термы (предложения) файла и добавить их в конец базы данных.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.