Иван Братко - Программирование на языке Пролог для искусственного интеллекта Страница 53

Тут можно читать бесплатно Иван Братко - Программирование на языке Пролог для искусственного интеллекта. Жанр: Компьютеры и Интернет / Программирование, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Иван Братко - Программирование на языке Пролог для искусственного интеллекта

Иван Братко - Программирование на языке Пролог для искусственного интеллекта краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Иван Братко - Программирование на языке Пролог для искусственного интеллекта» бесплатно полную версию:
Книга известного специалиста по программированию (Югославия), содержащая основы языка Пролог и его приложения для решения задач искусственного интеллекта. Изложение отличается методическими достоинствами — книга написана в хорошем стиле, живым языком. Книга дополняет имеющуюся на русском языке литературу по языку Пролог.Для программистов разной квалификации, специалистов по искусственному интеллекту, для всех изучающих программирование.

Иван Братко - Программирование на языке Пролог для искусственного интеллекта читать онлайн бесплатно

Иван Братко - Программирование на языке Пролог для искусственного интеллекта - читать книгу онлайн бесплатно, автор Иван Братко

 U > V, !, М is U + 1; % М равно 1 плюс max( U, V)

 М is V + 1.

Рис. 10.10. Вставление элемента в AVL-справочник. В этой программе предусмотрено, что попытка повторного вставления элемента терпит неудачу. По поводу процедуры соединить см. рис. 10.9.

Резюме

• 2-3 деревья и AVL-деревья, представленные в настоящей главе, — это примеры сбалансированных деревьев.

• Сбалансированные или приближенно сбалансированные деревья гарантируют эффективное выполнение трех основных операций над деревьями: поиск, добавление и удаление элемента. Время выполнения этих операций пропорционально log n, где n — число вершин дерева.

Литература

2-3 деревья детально описаны, например, в Aho, Hopcroft and Ullman (1974, 1983). В книге этих авторов, вышедшей в 1983 г., дается также реализация соответствующих алгоритмов на языке Паскаль. H.Вирт (см. Wirth (1976)) приводит программу на Паскале для работы с AVL-деревьями. 2-3 деревья являются частным случаем более общего понятия В-деревьев. В-деревья, а также несколько других вариантов структур данных, имеющих отношение к 2-3 деревьям в AVL-деревьям, рассматриваются в книге Gonnet (1984). В этой книге, кроме того, даны результаты анализа поведения этих структур.

Программа вставления элемента в AVL-дерево, использующая только величину "перекоса" дерева (т.е. значение разности глубин поддеревьев, равной -1, 0 или 1, вместо самой глубины) опубликована ван Эмденом (1981).

Aho А. V., Hopcroft J. E. and Ullman J. D. (1974). The Design and Analysis of Computer Algorithms. Addison-Wesley. [Имеется перевод: Ахо А., Хопкрофт Дж. Построение и анализ вычислительных алгоритмов. Пер. с англ. — М.: Мир, 1979.]

Aho А. V., Hopcroft J. E. and Ullman J. D. (1983). Data Structures and Algorithms. Addison-Wesley.

Gonnet G. H. (1984). Handbook of Algorithms + Data Structures. Addison-Wesley.

van Emden M. (1981). Logic Programming Newsletter 2.

Wirth N. (1976). Algorithms + Data Structures = Programs. Prentice-Hall. [Имеется перевод: Вирт H. Алгоритмы + структуры данных = программы. — M.: Мир, 1985.] 

Глава 11.

Основные стратегии решения задач

В данной главе мы сосредоточим свое внимание на одной общей схеме для представления задач, называемой пространством состояний. Пространство состояний — это граф, вершины которого соответствуют ситуациям, встречающимся в задаче ("проблемные ситуации"), а решение задачи сводится к поиску пути в этом графе. Мы изучим на примерах, как формулируются задачи в терминах пространства состояний, а также обсудим общие методы решения задач, представленных в рамках этого формализма. Процесс решения задачи включает в себя поиск в графе, при этом, как правило, возникает проблема, как обрабатывать альтернативные пути поиска. В этой главе будут представлены две основные стратегии перебора альтернатив, а именно поиск в глубину и поиск в ширину.

11.1. Предварительные понятия и примеры

Рассмотрим пример, представленный на рис. 11.1. Задача состоит в выработке плана переупорядочивания кубиков, поставленных друг на друга, как показано на рисунке. На каждом шагу разрешается переставлять только один кубик. Кубик можно взять только тогда, когда его верхняя поверхность свободна. Кубик можно поставить либо на стол, либо на другой кубик. Для того, чтобы построить требуемый план, мы должны отыскать последовательность ходов, реализующую заданную трансформацию.

Эту задачу можно представлять себе как задачу выбора среди множества возможных альтернатив. В исходной ситуации альтернатива всего одна: поставить кубик С на стол. После того как кубик С поставлен на стол, мы имеем три альтернативы:

• поставить А на стол или

• поставить А на С, или

• поставить С на А.

Рис. 11.1. Задача перестановки кубиков.

Ясно, что альтернативу "поставить С на стол" не имело смысла рассматривать всерьез, так как этот ход никак не влияет на ситуацию.

Как показывает рассмотренный пример, с задачами такого рода связано два типа понятий:

(1) Проблемные ситуации.

(2) Разрешенные ходы или действия, преобразующие одни проблемные ситуации в другие.

Проблемные ситуации вместе с возможными ходами образуют направленный граф, называемый пространством состояний. Пространство состояний для только что рассмотренного примера дано на рис. 11.2. Вершины графа соответствуют проблемным ситуациям, дуги — разрешенным переходам из одних состояний в другие. Задача отыскания плана решения задачи эквивалентна задаче построения пути между заданной начальной ситуацией ("стартовой" вершиной) и некоторой указанной заранее конечной ситуацией, называемой также целевой вершиной.

На рис. 11.3 показан еще один пример задачи: головоломка "игра в восемь" в ее представление в виде задачи поиска пути. В головоломке используется восемь перемещаемых фишек, пронумерованных цифрами от 1 до 8. Фишки располагаются в девяти ячейках, образующих матрицу 3 на 3. Одна из ячеек всегда пуста, и любая смежная с ней фишка может быть передвинута в эту пустую ячейку. Можно сказать и по-другому, что пустой ячейке разрешается перемещаться, меняясь местами с любой из смежных с ней фишек. Конечная ситуация — это некоторая заранее заданная конфигурация фишек, как показано на рис. 11.3.

Рис. 11.2. Графическое представление задачи манипулирования кубиками. Выделенный путь является решением задачи рис. 11.1.

Нетрудно построить аналогичное представление в виде графа и для других популярных головоломок. Наиболее очевидные примеры — это задача о "ханойской башне" и задача о перевозке через реку волка, козы и капусты. Во второй из этих задач предполагается, что вместе с человекам в лодке помещается только один объект и что человеку приходится охранять козу от волка и капусту от козы. С описанной парадигмой согласуются также многие задачи, имеющие практическое значение. Среди них — задача о коммивояжере, которая может служить моделью для многих практических оптимизационных задач. В задаче дается карта с n городами в указываются расстояния, которые надо преодолеть по дорогам при переезде из города в город. Необходимо найти маршрут, начинающийся в некотором городе, проходящий через все города и заканчивающиеся в том же городе. Ни один город, за исключением начального, не разрешается посещать дважды.

Рис. 11.3. "Игра в восемь" и ее представление в форме графа.

Давайте подытожим те понятия, которые мы ввели, рассматривая примеры. Пространство состояний некоторой задачи определяет "правила игры": вершины пространства состояния соответствуют ситуациям, а дуги — разрешенным ходам или действиям, или шагам решения задачи. Конкретная задача определяется

• пространством состояний

• стартовой вершиной

• целевым условием (т.е. условием, к достижению которого следует стремиться); "целевые вершины" — это вершины, удовлетворяющие этим условиям.

Каждому разрешенному ходу или действию можно приписать его стоимость. Например, в задаче манипуляции кубиками стоимости, приписанные тем или иным перемещениям кубиков, будут указывать нам на то, что некоторые кубики перемещать труднее, чем другие. В задаче о коммивояжере ходы соответствуют переездам из города в город. Ясно, что в данном случае стоимость хода — это расстояние между соответствующими городами.

В тех случаях, когда каждый ход имеет стоимость, мы заинтересованы в отыскании решения минимальной стоимости. Стоимость решения — это сумма стоимостей дуг, из которых состоит "решающий путь" — путь из стартовой вершины в целевую. Даже если стоимости не заданы, все равно может возникнуть оптимизационная задача: нас может интересовать кратчайшее решение.

Прежде тем будут рассмотрены некоторые программы, реализующие классический алгоритм поиска в пространстве состоянии, давайте сначала обсудим. как пространство состояний может быть представлено в прологовской программе.

Мы будем представлять пространство состояний при помощи отношения

после( X, Y)

которое истинно тогда, когда в пространстве состояний существует разрешенный ход из вершины X в вершину Y. Будем говорить, что Y — это преемник вершины X. Если с ходами связаны их стоимости, мы добавим третий аргумент, стоимость хода:

после( X, Y, Ст)

Эти отношения можно задавать в программе явным образом при помощи набора соответствующих фактов. Однако такой принцип оказывается непрактичным и нереальным для тех типичных случаев, когда пространство состояний устроено достаточно сложно. Поэтому отношение следования после обычно определяется неявно, при помощи правил вычисления вершин-преемников некоторой заданной вершины. Другим вопросом, представляющим интерес с самой общей точки зрения, является вопрос о способе представления состояний, т.е. самих вершин. Это представление должно быть компактным, но в то же время оно должно обеспечивать эффективное выполнение необходимых операций, в частности операции вычисления вершин-преемников, а возможно и стоимостей соответствующих ходов.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.