Дмитрий Миронов - Компьютерная графика в дизайне Страница 9

Тут можно читать бесплатно Дмитрий Миронов - Компьютерная графика в дизайне. Жанр: Компьютеры и Интернет / Программы, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Дмитрий Миронов - Компьютерная графика в дизайне

Дмитрий Миронов - Компьютерная графика в дизайне краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Дмитрий Миронов - Компьютерная графика в дизайне» бесплатно полную версию:
Рассмотрены фундаментальные понятия и концепции компьютерной графики, информационные модели цвета, модели векторного и пиксельного изображений и приемы работы с ними. Основное преимущество учебника в том, что изложение материала не привязано к конкретным программным продуктам. Подробное описание практических методов векторной и пиксельной графики дополнено многочисленными примерами и иллюстрациями, приведен словарь основных терминов компьютерной графики.Для студентов и преподавателей вузов и пользователей, интересующихся компьютерной графикой.

Дмитрий Миронов - Компьютерная графика в дизайне читать онлайн бесплатно

Дмитрий Миронов - Компьютерная графика в дизайне - читать книгу онлайн бесплатно, автор Дмитрий Миронов

В векторных информационных моделях изображения, использующихся на практике, не один, а много классов графических объектов (см. разд. 2.1.2). Более того, в них имеются составные графические объекты, включающие в себя несколько простых, играющих в составных объектах различные роли. В качестве примера можно привести текст, размещенный на криволинейной траектории. Здесь простыми объектами будут текст и кривая. Каждый из них можно редактировать с помощью методов его класса, но при этом у составного объекта есть и свои методы (например, изменение расстояния между текстом и кривой).

На рис. 1.2.4 представлен простейший векторный рисунок, построенный по известному детскому стишку "Точка, точка, запятая…".

Рис. 1.2.4. Векторное изображение

К сожалению, этот известный всем текст содержит явно недостаточно информации для однозначного воспроизведения изображения, и автору пришлось многое добавлять от себя. В частности, не было никаких указаний о расположении упомянутых графических объектов и об их размерах. Результаты доработки представлены в табл. 1.2.1.

Таблица 1.2.1. Состав векторной информационной модели изображения

Анализируя данные табл. 1.2.1, составляющие векторную информационную модель изображения, можно сделать несколько выводов о природе этой модели.

• Даже простейшее векторное изображение, как правило, включает в себя графические объекты нескольких классов. Именно из-за этого не удалось обойтись одной общей таблицей – разные классы изображения описываются различными совокупностями параметров (см. разд. 2.1.2–2.1.3).

• Дескрипторам модели соответствуют строки табл. 1.2.1. Каждый из дескрипторов описывает независимый графический объект, которому сопоставлено уникальное имя. Имя объекта может содержать в себе информацию о том, чему соответствует этот объект в реальном или виртуальном мире.

• В каждом дескрипторе кроме имени графического объекта и информации о его классе содержатся значения свойств, конкретизирующие его геометрические свойства – размеры, угол разворота, местоположение. Меняя значение этих свойств, можно изменять изображение, которое будет построено при рендеринге информационной модели.

Примечание

В дескрипторе также содержится информация о цвете объекта, но в данном примере для упрощения соответствующие свойства не были представлены.

Эти выводы будут подробнее рассмотрены в первых разделах главы 2.1. Здесь ограничимся перечислением основных достоинств и недостатков векторной информационной модели. Начнем с достоинств:

• При желании автора, векторное изображение можно структурировать с любой степенью детализации. Произвольному фрагменту изображения можно поставить в соответствие именованный графический объект или именованную связанную группу графических объектов векторной информационной модели. Это дает возможность установить соответствие дескрипторов модели структуре изображаемого объекта, что, в свою очередь, значительно упрощает и ускоряет выделение нужных для работы частей изображения.

• Геометрические преобразования векторных изображений выполняются с помощью простых операций. В процессе масштабирования изображение не искажается, визуальная информация не теряется, артефакты (визуальный шум) не появляются (рис. 1.2.5). Кроме того, ширина линий векторного изображения по желанию может оставаться при масштабировании неизменной (как на рис. 1.2.5) или меняться в соответствии с масштабом.

Рис. 1.2.5. Увеличение размера изображения при работе с векторной информационной моделью

• Векторная модель изображения сравнительно компактна, объем требующейся для ее размещения памяти зависит только от количества графических объектов, входящих в ее состав, но не от размера изображения.

• Для представления текстов в векторной модели предусмотрены специальные классы объектов. Это позволяет работать с текстом удобными методами редактирования и форматирования на любой стадии графического проекта, не снижая качество воспроизведения текста, который преобразуется в изображении только при рендеринге.

Наряду с перечисленными достоинствами у векторной информационной модели изображения имеются и недостатки:

• Сложность в освоении, что обусловлено включением в состав модели большого числа классов графических объектов. На изучение этих классов и методов работы с ними требуется немало времени.

• Данная модель не является унифицированной. В разных программных средствах компьютерной графики используется различная номенклатура классов графических объектов и различные структуры классов составных графических объектов. За счет этого переход на новый векторный графический редактор может потребовать значительных затрат времени и труда на изучение новой версии векторной информационной модели.

• Автоматическое построение векторной модели изображения представляет собой очень сложную задачу. Программы трассировки позволяют преобразовать пиксельное изображение в векторное представление, но они не могут автоматически структурировать получившуюся совокупность векторных объектов, из-за чего утрачивается основное достоинство векторной информационной модели. Поэтому большая часть векторных информационных моделей составляется пользователями вручную (см. разд. 2.9.4–2.9.6).

• Техника работы с этой моделью плохо приспособлена для создания фотореалистичных изображений. Векторные изображения, как правило, слишком резкие, плоскостные, "мультяшные". Чтобы добиться реалистичности векторного изображения, необходима сложная информационная модель и большой опыт работы с графическим редактором.

1.2.4. Пиксельная информационная модель

В этом разделе рассматриваются устройство и основные свойства базовой информационной модели пиксельного изображения, на основе которой разработаны все форматы пиксельных графических документов.

Исходное изображение до преобразования его в пиксельную информационную модель может быть представлено в виде плоского отпечатка, объемной сцены реального или виртуального мира, ранее построенной векторной или пиксельной информационной модели. Для формирования пиксельной информационной модели изображения выполняется его растрирование.

Примечание

Растрированием называется разбиение плоскости на одинаковые по форме выпуклые области, прилегающие друг к другу без зазоров – элементы растра. Простейшие варианты растрирования выполняются с помощью квадратных, прямоугольных и правильных шестиугольных элементов. Растрирование представляет собой частный случай тесселяции – процедуры, при которой на форму получающихся элементов не накладывается требование выпуклости. Растрирование в компьютерной графике может выполняться аппаратно (при сканировании или съемке) и программно (в процессе рендеринга).

Затем в пределах каждого из элементов растра выполняется усреднение цветовой характеристики. Если вся площадь элемента окрашена одним цветом, цветовая характеристика остается неизменной. Если в пределах элемента имеются области различных цветов, выводится усредненное значение в соответствии с алгоритмом усреднения. После выполнения усреднения элемент растра становится пикселом – элементарным объектом пиксельного изображения. Итак, пиксел (в некоторых публикациях пиксель) – это элемент растра изображения с усредненной цветовой характеристикой. Совокупность всех пикселов, составляющих изображение, также называется растром.

Примечание

В принципе, элементы тесселяции могут быть весьма причудливой формы, но на практике в информационной модели пиксельного изображения встречаются только растры с прямоугольными (чаще всего – квадратными) элементами.

Примечание

К сожалению, в литературе по компьютерной графике широко распространен другой термин для обозначения пиксельной информационной модели – точечная информационная модель. Его следует считать неточным и устаревшим; в главе 3.1 показано, что пиксел и точка – термины, обозначающие различные объекты.

В базовом варианте область данных пиксельной информационной модели изображения состоит из последовательности дескрипторов, каждый из которых описывает один пиксел изображения. Координаты пиксела не указываются в дескрипторе, поскольку его место в растре можно однозначно определить по порядковому номеру дескриптора и размеру растра. Следовательно, в дескрипторе достаточно указать только характеристику цвета. Способ представления характеристики цвета в дескрипторе зависит от выбранной цветовой модели.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.