Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции Страница 11

Тут можно читать бесплатно Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции. Жанр: Компьютеры и Интернет / Прочая околокомпьтерная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции

Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции» бесплатно полную версию:
Автор книги — выдающийся ученый, физик и кибернетик, создатель языка Рефал и нового направления в программировании, связанного с преобразованием программ. Известен широкому кругу отечественных читателей как составитель сборника “Физики шутят”. Вынужденный покинуть Родину, с 1977 года он живет и работает в США. В этой книге В. Ф. Турчин излагает свою концепцию метасистемного перехода и с ее позиций прослеживает эволюцию мира от простейших одноклеточных организмов до возникновения мышления, развития науки и культуры. По вкладу в науку и философию монография стоит в одном ряду с такими известными трудами как “Кибернетика” Н. Винера и “Феномен человека” П. Тейяра де Шардена.Книга написана ярким образным языком, доступна читателю с любым уровнем подготовки. Представляет особый интерес для интересующихся фундаментальными вопросами естествознания.Замечания по электронной версии книги присылайте, пожалуйста, членам редакционного совета. Спасибо!Редакционный совет: А. В. Климов, А. М. Чеповский, В. С. Штаркман

Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции читать онлайн бесплатно

Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции - читать книгу онлайн бесплатно, автор Турчин Фёдорович

Сетчатка глаза лягушки, как и других позвоночных, имеет три слоя нервных клеток. Верхний (самый внешний) слой образуют светочувствительные рецепторы — палочки и колбочки. Затем идет слой ассоциативных нейронов нескольких типов. Одни из них (так называемые биполярные клетки) дают преимущественно вертикальные аксоны, по которым возбуждение передается в более глубокие слои. Другие (горизонтальные, или амакринные клетки) связывают нейроны, расположенные на одном уровне. Последний по глубине залегания — третий слой — образуют так называемые ганглиозные клетки. Их дендриты получают информацию от клеток второго слоя, а аксоны представляют собой длинные волокна, которые сплетаются в жгут — зрительный нерв, соединяющий сетчатку с мозгом. Эти аксоны ветвятся, входя в зрительный бугор мозга, и передают информацию дендритам мозговых нейронов.

Глаз лягушки имеет около миллиона рецепторов, около трех миллионов ассоциативных нейронов второго слоя и полмиллиона ганглиозных клеток. Такая структура сетчатки дает основание предположить, что анализ изображения начинается уже в глазу животного и изображение передается по зрительному нерву в терминах каких-то промежуточных понятий. Сетчатка как бы является вынесенной на периферию частью мозга. Это предположение подтверждается тем, что расположение на поверхности зрительного бугра точек входа нервных волокон (аксонов) совпадает с расположением соответствующих ганглиозных клеток на выходе сетчатки. И это несмотря на то, что на протяжении зрительного нерва волокна многократно переплетаются друг с другом и меняют свое положение на срезе нерва. Наконец, к тому же заключению приводят и данные эмбриологии о развитии сетчатки.

В описываемых опытах в зрительный нерв лягушки вводился тонкий платиновый электрод, что позволяло регистрировать возбуждение отдельных ганглиозных клеток. Лягушка помещалась в центр алюминиевой полусферы, имеющей (изнутри) матово-серый цвет. По внутренней поверхности полусферы могли перемещаться различные темные предметы — прямоугольники, диски и т. п., поддерживаемые с помощью магнита, расположенного с внешней стороны полусферы.

Результаты экспериментов мы можем суммировать следующим образом. Каждая ганглиозная клетка имеет определенное рецептивное поле, т. е. участок сетчатки (множество рецепторов), с которого она собирает информацию. Состояние рецепторов вне рецептивного поля никак не влияет на состояние ганглиозной клетки. Размеры рецептивных полей у клеток разного типа, если измерять их угловыми размерами соответствующей видимой области, варьируются от 2 до 15° в диаметре.

Ганглиозные клетки делятся на четыре типа в зависимости от того, какой процесс в своем рецептивном поле они регистрируют. Эти типы следующие:

Детекторы длительно сохраняющегося контраста. Эти клетки не реагируют на включение или выключение общего освещения. Но если в рецептивном поле появляется край объекта, более темного или более светлого, чем фон, цвета, то клетка сразу же начинает генерировать импульсы.

Детекторы выпуклых краев. Эти клетки возбуждаются в том случае, если в рецептивном поле появляется маленький (не более 3°) выпуклый объект. Максимальное возбуждение (частота импульсов) достигается, когда диаметр объекта составляет примерно половину диаметра рецептивного поля. На прямой край объекта клетка не реагирует.

Детекторы движущихся краев. Их рецептивное поле обладает шириной примерно 12°. Клетка реагирует на любой различимый край объекта, более темного или более светлого, чем фон, цвета; но только при условии, что он движется. Если через поле плавно перемещается предмет шириной более 5°, то возникают две реакции: на передний и на задний край.

Детекторы затемнения поля. Они посылают серию импульсов, если внезапно уменьшается общая освещенность рецептивного поля.

Чрезвычайно интересно, как расположены окончания зрительных волокон в зрительном бугре мозга. Мы уже говорили, что в плане это расположение совпадает с расположением соответствующих ганглиозных клеток в сетчатке. Но, кроме того, оказывается, что окончания волокон каждого типа находятся в зрительном бугре на определенной глубине, так что в мозгу лягушки имеется четыре слоя нейронов, воспринимающих зрительную информацию, и каждый слой как бы получает оттиск сетчатки, но в определенном аспекте соответственно одному из четырех типов ганглиозных клеток. Эти слои и являются датчиками информации для высших отделов мозга.

Опыты, подобные описанным, довольно сложны, и по поводу их интерпретации иногда возникают споры. Детали описанной системы могут измениться или получить другое толкование. Тем не менее общий характер системы понятий первого уровня установлен, по-видимому, достаточно твердо. Мы видим переход от точечного описания к локальному, учитывающему непрерывную структуру изображения. Ганглиозные клетки служат распознавателями таких первичных понятий, как край, выпуклость, движение, отнесенных к определенной области видимого мира.

2.7. Обломки системы понятий

У человека понятия нижайшего уровня, относящиеся к зрительному восприятию, вероятно, мало отличаются от понятий лягушки. Во всяком случае, структура сетчатки у млекопитающих и человека такая же, как и у земноводных.

Некоторое представление о понятиях следующих уровней иерархии дает явление нарушения восприятия стабилизированного на сетчатке изображения. Это очень интересное явление. Оно состоит в следующем.

Когда человек смотрит на неподвижный объект, «фиксирует» его глазами, глазные яблоки не остаются абсолютно неподвижными, а созерцают небольшие непроизвольные движения. В результате изображение объекта на сетчатке находится в постоянном движении, складывающемся из медленного дрейфа и скачкообразных смещений, возвращающих изображение к точке максимальной чувствительности. Оно «топчется на месте» в окрестности этой точки.

Можно создать на сетчатке стабилизированное, не топчущееся на месте изображение. Для этого надо, очевидно, чтобы объект был жестко связан с глазным яблоком и двигался вместе с ним. Достигается это так (рис. 2.4). На глаз надевают контактную линзу, к которой прикреплен маленький стерженек. Стерженек несет миниатюрный оптический проектор4, в который можно вставлять диапозитивы размером в несколько миллиметров. Испытуемый видит изображение как удаленное в бесконечность. Так как проектор поворачивается вместе с глазом, изображение на сетчатке неподвижно.

При предъявлении испытуемому стабилизированного изображения он в течение первых нескольких секунд воспринимает его как при нормальном зрении, но затем начинаются нарушения. Изображение то исчезает, заменяясь серым или черным фоном, то появляется частями или целиком.

Рис. 2.4. Устройство для стабилизации изображения на сетчатке

Уже сам факт неправильного восприятия стабилизированного изображения весьма примечателен. С логической точки зрения нет никакой необходимости, чтобы изображение неподвижного объекта гуляло по сетчатке. Количество информации от этого не увеличивается, а обрабатывать ее становится труднее. И действительно, когда аналогичные задачи встают в области техники, например, при передаче изображения по телевизору или при вводе информации с экрана в вычислительную машину, то предпринимаются специальные усилия, чтобы стабилизировать изображение. А человеческий глаз не только приспособлен к прыгающему изображению, но и решительно отказывается принимать изображение, если оно неподвижно. Это свидетельствует о том, что понятия, связанные с движением, подобные, вероятно, тем, которые мы наблюдали у лягушки, глубоко укоренились где-то в нижних этажах иерархии, и если соответствующие классификаторы вывести из игры, то правильная обработка информации нарушится. С точки зрения конструктора сложного аппарата, подобного глазу (плюс обработка информации), такое устройство является странным. Конструктор, наверное, все нижние этажи занял бы статическими понятиями, а описание движения объектов уже проводил бы в терминах более высокого уровня. Но иерархия зрительных понятий возникла в процессе эволюции. Для наших далеких лягушкоподобных предков были чрезвычайно важны понятия, связанные с движением, и им некогда было ждать, пока у них разовьются сложные статические понятия. Поэтому примитивные динамические понятия возникли на самых ранних этапах развития нервной системы, а так как природа использует найденные ею блоки на следующих этапах строительства, эти понятия прочно закрепились в самом низу иерархии понятий. Чтобы они могли работать, глазному яблоку приходится совершать «броуновские» движения.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.