Компьютерра - Компьютерра PDA 29.05.2010-04.06.2010 Страница 12
- Категория: Компьютеры и Интернет / Прочая околокомпьтерная литература
- Автор: Компьютерра
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 20
- Добавлено: 2019-05-28 16:21:00
Компьютерра - Компьютерра PDA 29.05.2010-04.06.2010 краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Компьютерра - Компьютерра PDA 29.05.2010-04.06.2010» бесплатно полную версию:ОГЛАВЛЕНИЕСергей Голубицкий: Голубятня: ЕвровизияВасилий Щепетнев: Жизнь и смерть деревянных солдат – IIНиколай Маслухин: Промзона: Записки на манжетах Михаил Карпов: Осенью Xbox станет следить за движениями игроковЮрий Ильин: Хостеры решили сами фильтровать контентГригорий Рудницкий: Оливер Хэкман (Youtube) о роботах, которые ищут пиратовОлег Парамонов: Ваша частная информация хочет быть свободнойАндрей Письменный: Google посчитал русские сайтыВаннах Михаил: Кафедра Ваннаха: Образование и производствоНиколай Маслухин: Промзона: Наушники для глухихЮрий Ильин: DDoS: услуги интернет-киллеров для всех желающихАнатолий Вассерман: Преступление и наказаниеНика Парамонова: Системы мониторинга работоспособности веб-сайтаСергей Голубицкий: Голубятня: Фиговина №28Андрей Письменный: iMobilco сделает "русский Kindle"Василий Щепетнев: Василий Щепетнёв: О выбореНиколай Маслухин: Промзона: Картриджи для ремонтаМихаил Карпов: Частная космическая компания тестирует ракетоносительДмитрий Вибе: Загадки астрохимииЮрий Ильин: Китайский суперкомпьютер едва не стал самым быстрымКрестников Евгений: Кто победит в битве видеокодеков HTML5Николай Маслухин: Промзона: Футболка-календарьАнтон Нехаенко: Кабельное телевидение против Google TVВаннах Михаил: Кафедра Ваннаха: Образование как путь в науку Павел Борисов: Конференция D8: Стив Джобс, Марк Цукерберг и Джеймс Кэмерон
Юрий Ильин: Google заменит Windows на Linux и Mac OS XАндрей Письменный: Почему работники Foxconn прыгают с крышСергей Голубицкий: Голубятня: "Санькя"Василий Щепетнев: Василий Щепетнёв: Дюжина СизифовНиколай Маслухин: Промзона: Удобный дверной замокАнатолий Вассерман: Фермеры и кулакиМихаил Карпов: Майский приз ReaDitorialПавел Борисов: Второй день D8: Стив Баллмер, Рэй Оззи и Питер Чу
Компьютерра - Компьютерра PDA 29.05.2010-04.06.2010 читать онлайн бесплатно
По этой причине обнаружить собственное излучение межзвёздных молекул удалось лишь после появления радиотелескопов. Первой молекулой, обнаруженной по собственному излучению, стал гидроксил (ОН). Затем последовали аммиак, вода... И теперь по спектральным радиолиниям зафиксировано наличие в межзвёздном (иногда околозвёздном) пространстве примерно полутора сотен видов молекул - от двухатомных до 13-атомных.
Практически все эти молекулы не распределены между звёздами равномерно, а собраны в гигантские межзвёздные молекулярные облака. Массы самых больших облаков достигают миллионов солнечных масс, а размеры исчисляются десятками парсеков (1 парсек = 3,26 светового года). Полная масса молекулярного межзвёздного газа в нашей Галактике составляет несколько миллиардов солнечных масс. Именно в наиболее плотных областях этих облаков и происходит процесс рождения новых звёзд и планетных систем. Четыре с половиной миллиарда лет назад в одном из подобных плотных газовых (точнее, газо-пылевых) сгустков возникло и наше Солнце.
Именно исследование формирования звёзд и планет является одним из основных стимулов к развитию астрохимии. Дело в том, что главной молекулой в молекулярных облаках является молекула водорода. По сути, все остальные молекулы - лишь едва различимая примесь на фоне изобилия молекулярного водорода. Но вот беда - именно эта самая распространённая молекула лишена (в силу симметричной структуры) сильных вращательных и колебательных переходов.
Иными словами, газ, состоящий из молекулярного водорода, в условиях межзвёздных молекулярных облаков практически не светится, то есть ненаблюдаем. Следующая же по распространённости молекула - оксид углерода - по содержанию уступает молекуле водорода в 10000 раз. Фактически, в самом лучшем случае, наблюдая межзвёздный молекулярный газ, мы видим одну молекулу из десяти тысяч. Конечно, спектр даже простой молекулы СО содержит немало линий. У более же сложных молекул, например у метанола, количество линий превышает несколько сотен. Анализ этих линий позволяет определить температуру и плотность газа, параметры поля излучения, в которое погружены эти молекулы... Но насколько эта информация имеет отношение к молекулярному водороду?
Чтобы ответить на этот вопрос, необходимо, во-первых, проводить наблюдения линий как можно большего количества молекул и с максимально возможным угловым разрешением. Во-вторых, необходимо строить максимально подробные физико-химические модели межзвёздного вещества. Мы знаем, что разные молекулы населяют разные области молекулярных облаков (это не относится, конечно, к вездесущему, но ненаблюдаемому молекулярному водороду).
Например, так называемые дозвёздные ядра, то есть, плотные сгустки вещества, в которых только начался процесс гравитационного сжатия (предполагается, что он закончится рождением звезды), имеют "луковичную" химическую структуру: в плотном центре сосредоточены соединения азота (NH3, N2H+), а в более разреженной внешней оболочке обильны соединения углерода (CO, CS, HCO+). Химические модели предсказывают, что баланс между углеродосодержащими и азотосодержащими соединениями меняется со временем, что открывает возможность оценки возраста дозвёздного ядра по его молекулярному составу. Благодаря эффекту Доплера, по относительному сдвигу линий различных молекул можно восстанавливать характер движения вещества в облаке. Собственно говоря, именно анализ спектров этих объектов и позволил сделать вывод о том, что они испытывают глобальное сжатие, предшествующее рождению звезды.
Перспективы развития наблюдательной техники вполне радужные. В мире действует немало радиотелескопов миллиметрового и субмиллиметрового диапазонов, позволяющих получать спектры межзвёздных облаков с высоким разрешением по частоте. В 2009 году Европейским космическим агентством был запущен космический телескоп субмиллиметрового диапазона "Гершель", также в значительной степени ориентированный на изучение молекулярного состава межзвёздной среды и в первую очередь - областей звездообразования.
Наконец, буквально через несколько лет вступит в строй флагман субмиллиметровой и миллиметровой астрономии - интерферометрическая система ALMA (Европейская Южная обсерватория). Эта система из 50 антенн позволит получать изображения не только рождающихся звёзд, но и рождающихся планет, а также обнаруживать спектральные линии, на несколько порядков более слабые, чем можно наблюдать сейчас.
Несколько хуже обстоят дела с моделями. Собственно говоря, с самими моделями особых проблем нет - быстродействие современных компьютеров позволяет легко моделировать одновременное течение многих тысяч реакций, связывающих между собой сотни различных видов молекул (а также атомов и ионов). Но вот параметры многих из этих реакций известны пока крайне плохо, если вообще известны. Поэтому основные усилия в этом направлении сосредоточены на воспроизведении наиболее плохо исследованных реакций в лабораторных условиях. Сделать это очень непросто, поскольку "плотный" межзвёздный газ на самом деле существенно более разрежен, чем лучший лабораторный вакуум.
Но это проблемы практического характера. Основной же фундаментальный вопрос, который стоит сейчас перед астрохимией, заключается в том, насколько далеко может заходить синтез сложных молекул в молекулярных облаках. Ответ на него имеет прямое отношение к проблеме происхождения жизни на Земле: не исключено, что придумывать механизмы синтеза сложных пред-органических соединений на Земле не нужно, поскольку они присутствовали в Солнечной системе изначально. Чёткого ответа на этот вопрос нет. Из открытых на сегодняшний день межзвёздных органических молекул большая часть обнаружена в единственном объекте - гигантском молекулярном облаке Sgr B2(N), расположенном неподалёку от центра Галактики. Пока неясно, является ли его богатый химический состав отражением какой-то специфики этого объекта или же на определённом эволюционном этапе подобное разнообразие свойственно всем молекулярным облакам.
Иллюстрации:
Сборка космического субмиллиметрового телескопа "Гершель". Наблюдения в этом диапазоне (0,5–1 мм) осложняются высокими требованиями к качеству поверхности зеркала, поэтому наземные субмиллиметровые телескопы можно пока пересчитать по пальцам. В космос же телескоп этого диапазона с таким большим зеркалом отправился впервые.
Так выглядит гигантское молекулярное облако Sgr B2(N) при наблюдениях на длине волны 1,3 см. Этот снимок получен при помощи радиоинтерферометра VLA (США). Показанная на нём область имеет около одного парсека в поперечнике.
Глобула B68, в отличие от других подобных сгустков, расположена в относительной изоляции, поэтому она хорошо выделяется на звёздном фоне. При наблюдениях в оптическом диапазоне она выглядит чёрным пятном, поскольку сама глобула в нём не излучает, а свет фоновых звёзд полностью поглощается межзвёздной пылью, входящей в состав глобулы. Однако в линиях радиоизлучения молекул CO, CS и N2H+ глобула светится очень ярко, что позволяет изучать детали распределения вещества в ней.
Так выглядит Млечный Путь в излучении молекулы оксида углерода. Считается, что эта молекула хорошо перемешана с молекулярным водородом и потому может использоваться в качестве основного индикатора расположения молекулярных облаков.
Китайский суперкомпьютер едва не стал самым быстрым
Автор: Юрий Ильин
Опубликовано 02 июня 2010 года
На днях обновился индекс Top500 - рейтинг пятисот мощнейших суперкомпьютеров мира. Главным событием стал выход на ведущие позиции нового китайского суперкомпьютера Nebulae, установленного в Государственном суперкомпьютерном центре в Шэньчжэне.
Первое и третье места пока что держат американские суперкомпьютеры. Nebulae, однако, явно претендует и на первое место. Более того, его теоретическая пиковая производительность составляет 2,98 петафлопса, в то время, как у лидера рейтинга - суперкомпьютера Jaguar, установленного в Оукриджской национальной лаборатории в США, пиковая производительность равна лишь 2,33 петафлопса. Максимальная производительность, однако, зарегистрированная по итогам теста LinPack у Jaguar составила 1,759 петафлопса, в то время как у Nebulae - 1,271 петафлопса.
Jaguar был построен компанией Cray на базе преимущественно шестиядерных процессоров Opteron 2,6 ГГц каждый, и насчитывает 224162 ядер. Nebulae - это кластер из блейд-серверов Dawning TC3600 Blade, работающих на базе процессоров Intel Xeon X5650, при этом в качестве "ускорителей" используются графические процессоры Nvidia Tesla C2050. У Nebulae количество ядер вдвое меньшее, чем у Jaguar - 120640.
На третьем месте оказался бывший лидер рейтинга - сконструированный в IBM первый в мире петафлопсовый суперкомпьютер Roadrunner из Национальной лаборатории в Лос-Аламосе. Он работает на процессорах PowerXCell 8i 3.2 ГГц и Opteron DC 1.8 ГГц. На сайте Лаборатории в Лос-Аламосе можно найти упоминание о том, что Roadrunner также использует графические ускорители для увеличения производительности.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.