Пиксель. История одной точки - Элви Рэй Смит Страница 16

Тут можно читать бесплатно Пиксель. История одной точки - Элви Рэй Смит. Жанр: Компьютеры и Интернет / Прочая околокомпьтерная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Пиксель. История одной точки - Элви Рэй Смит

Пиксель. История одной точки - Элви Рэй Смит краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Пиксель. История одной точки - Элви Рэй Смит» бесплатно полную версию:

Пиксели окружают нас — на экранах смартфонов и компьютеров, на рекламных щитах и дисплеях электронных часов. От наивного пиксель-арта до умопомрачительных 8K-рендеров, большая часть того, что мы видим, сделана из пикселей. Мы редко о них задумываемся, а ведь пиксели таят в себе неожиданную красоту компьютерных вычислений и служат фундаментом нашей виртуальной повседневности.
Автор этой книги знаком с пикселями как никто другой. Элви Рэй Смит — один из основоположников современной анимации, соучредитель Pixar и подразделения компьютерной графики Lucasfilm. Посвятив больше 50 лет работе с цифровыми изображениями, Смит написал их исчерпывающую и увлекательную биографию, в которой находится равное место для размышлений об истории искусства, технологиях и бизнесе. «Пиксель» проведет вас от открытий Фурье на заре Французской революции, первых компьютеров, пикселей и хакеров до создания «Истории игрушек» и «Ледникового периода», роли Стива Джобса в судьбе Pixar и прогресса в VR и нейросетях.

Пиксель. История одной точки - Элви Рэй Смит читать онлайн бесплатно

Пиксель. История одной точки - Элви Рэй Смит - читать книгу онлайн бесплатно, автор Элви Рэй Смит

мелкие части, чтобы дальнейшее деление стало невозможным. Другими словами, вы никогда не доберетесь до места, откуда получится сосчитать все точки. Математики предпочитают называть это неисчисляемой бесконечностью, но я буду придерживаться термина «аналоговая бесконечность». Оба понятия уместны: у непрерывных вещей аналоговое, или бесчисленное, множество частей, а количество частей у дискретных вещей исчисляется цифровой, или счетной, бесконечностью. По большому счету цифровое уступает аналоговому, даже если вы использовали очень много точек для представления гладкой кривой. Но великая идея Котельникова, похоже, заключается в том, что цифровое — вот так сюрприз! — эквивалентно аналоговому. При переходе на цифровые технологии ничего не теряется. Дискретный цифровой объект может быть точным представлением гладкого аналогового объекта.

На рис. 2.5 показан фрагмент звука или, скажем, визуальной сцены вдоль горизонтальной линии. Идея Котельникова работает в обоих случаях. Прямая линия внизу — нулевая громкость или нулевой уровень яркости, полная тишина или полная темнота. Кривая — это изменение громкости звука или изменение яркости визуальной сцены по мере того, как вы перемещаетесь вправо по линии. В любом случае мы отметим в исходном фрагменте черными зарубками точки, расположенные на одинаковом расстоянии друг от друга, — отсчеты. Мы начнем приходить к пониманию, отталкиваясь от этого одномерного примера, а затем постепенно перейдем к двум измерениям, необходимым для полной визуальной сцены. Точно так же мы поступили с волнами Фурье в первой главе.

Рис. 2.5

Рисунок 2.6 — это то, что вы получите, если удалите все точки на гладкой кривой, кроме тех, что отмечены черными зарубками. Между ними у нас есть только прямая линия нулевой громкости или нулевого уровня яркости. Нетрудно представить, как будет выглядеть двумерная версия. Представьте доску с гвоздями, забитыми на равных расстояниях по горизонтали и вертикали. Их высота варьируется в зависимости от яркости соответствующей гладкой поверхности — визуальной сцены. Везде, кроме мест, где расположены гвозди, высота поверхности будет нулевой.

Рисунок 2.5 — аналоговый, а рисунок 2.6 — цифровой. Вертикальные линии на втором называются отсчетами для аналоговой кривой — или выборкой. В случае доски с гвоздями для двумерной поверхности гвозди будут отсчетами соответствующей аналоговой поверхности. Замечательная теорема Котельникова гласит, что нам не нужна сама гладкая кривая для представления звука или сама гладкая поверхность для представления визуальной сцены. Нам нужны только отсчеты. Другими словами, на аналоговую бесконечность точек между отмеченными на первом рисунке черными зарубками можно не обращать внимания! Кажется, он говорит, что ничто может представлять нечто. Как такое возможно? Ответ кроется, конечно же, в слове «кажется».

Вы можете вообразить, что, если просто сделать очень-очень много отсчетов и разместить их достаточно близко друг к другу, они станут аналоговой звуковой кривой. У многих людей есть такое же интуитивное представление, что пиксели — какими бы они ни были, — расположенные достаточно близко друг к другу, станут соответствующей визуальной сценой. Но такое предположение ошибочно. Вы не можете достичь достаточно близкого расположения. Невозможно заставить цифровую бесконечность достичь плотности аналоговой бесконечности. Нельзя сосчитать неисчислимое. Но Котельников, кажется, говорит, что можно. Тогда как же это сделать?

Более того, его теорема гласит, что точки, показанные на втором рисунке, уже расположены достаточно близко друг к другу, то есть вы не получите ни преимуществ, ни дополнительной информации, взяв отсчеты, расположенные еще ближе. Вы все еще в недоумении? Я надеюсь на это, потому что сейчас я раскрою суть вопроса и продемонстрирую элегантность его идеи.

Итак, с этими витающими в воздухе вопросами мы уже почти готовы подступиться к великой идее Котельникова. Но сначала вернемся к идее Фурье, поскольку теорема Котельникова базируется на ней. Фурье научил нас, что звук или изображение могут быть представлены как сумма волн. На рисунке 2.7 показана одна из волн, которые дают в сумме аналоговый фрагмент, использованный мной в качестве примера и для удобства изображенный сверху (места отсчетов обозначены точками). Вы можете увидеть, что в этом фрагменте нет колебаний вверх или вниз более быстрых, чем на волне, поэтому можно считать, что у нее самая высокая частота. Все остальные волны в сумме волн Фурье для этого фрагмента обладают более низкими частотами, иначе мы бы увидели где-то в этом фрагменте более быстрое колебание.

Перейдем к сути замечательной идеи Котельникова: если вы делаете отсчеты некоей гладкой аналоговой кривой с удвоенной частотой самой высокой частоты волн Фурье из составляющей ее суммы, то вы всегда сможете точно восстановить обратно эту гладкую кривую, используя только сделанную выборку. Отсчеты дискретные, разрозненные, отделенные друг от друга — определенно не гладкие. Это первая часть его идеи, великая теорема отсчетов — та часть, в которой утверждается, что аналоговую гладкость можно заменить цифровой несвязностью. Во второй части рассказывается, как выполнить фактическое восстановление исходного аналогового сигнала из цифровых отсчетов.

Рис. 2.6

Котельников стоит на плечах гиганта Фурье. Частоты Фурье отражают скорость изменения аналогового изображения в поле зрения. Затем гениальная идея Котельникова подсказывает нам, как представить волны Фурье в цифровом виде. Удивительно, но для каждого цикла самой быстро меняющейся волны достаточно всего двух отсчетов. Нетрудно догадаться, почему именно двух: одно измерение для гребня волны, а второе — для впадины.

Пиксель

В цифровом мире у отсчетов Котельникова для визуального поля есть устоявшееся название. Мы называем их пикселями. Вот оно! Это и есть определение пикселя. Оно тесно связано как с Фурье, так и с Котельниковым. Отсчеты Котельникова — вот что делает Цифровой Свет возможным.

Пиксели — это не маленькие квадратики! Некоторых это изрядно удивит, потому что очень часто пиксели описывают именно так — настолько часто, что люди повсеместно отождествляют пиксели с плотно расположенными маленькими цветными квадратиками. Это, возможно, самое распространенное заблуждение зарождающейся цифровой эпохи, а слово «пикселизация» его только укрепило.

Рис. 2.7

На самом деле у пикселей нет формы. Это просто отсчеты, взятые в узлах регулярной сетки, — вспомните наш пример с гвоздями. Они представляют собой абстрактные точки нулевого размера, не имеющие длины, ширины и толщины. Они невидимы и бесцветны. Это просто число, кодирующее оттенок серого, или три числа, обозначающие три интенсивности цвета. Как мы увидим, именно восстановление аналогового из цифрового с использованием идеи Котельникова придает пикселям форму.

Самому слову «пиксель» пришлось побороться за право на существование. Пиксели поначалу назывались по-разному: например, точки, массивы точек, растровые элементы, точки изображения и элементы изображения. Последний вариант победил, но затем разгорелась битва за более

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.