Власть роботов. Как подготовиться к неизбежному - Мартин Форд Страница 4
- Категория: Компьютеры и Интернет / Прочая околокомпьтерная литература
- Автор: Мартин Форд
- Страниц: 73
- Добавлено: 2023-01-23 21:13:10
Власть роботов. Как подготовиться к неизбежному - Мартин Форд краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Власть роботов. Как подготовиться к неизбежному - Мартин Форд» бесплатно полную версию:Искусственный интеллект (ИИ) уже прочно вошел в нашу жизнь, однако Мартин Форд утверждает, что настоящая революция еще впереди.
В этой книге он очерчивает свое представление о будущем ИИ. С одной стороны, эта технология видится ему как мощный общедоступный ресурс, что-то вроде нового электрического тока, который в конечном счете преобразит практически все области экономики, общественной жизни и культуры. С другой, ИИ несет с собой реальные опасности как для отдельных людей, так и для общества в целом. Он делает возможным появление дипфейков, способных ввергнуть в хаос общество, порождает беспрецедентные механизмы социального контроля и может быть совершенно необъективным.
Такую технологию нельзя принимать слепо и бездумно, и эта книга должна помочь человечеству подготовиться к грядущему — верно понять происходящее, отделить сенсации от реальности и найти оптимальные способы обеспечения процветания каждого из нас и всего общества в целом.
Власть роботов. Как подготовиться к неизбежному - Мартин Форд читать онлайн бесплатно
Если электричество дает энергию, обеспечивающую функционирование других инноваций, то ИИ предоставляет доступ к интеллекту, включая способность решать задачи, принимать решения, а когда-нибудь, по всей видимости, и умение мыслить, изобретать и выдвигать новые идеи. Электричество может питать машину, снижающую трудозатраты, а ИИ сам по себе является трудосберегающей технологией. Его распространение в экономике окажет колоссальное воздействие на трудовые ресурсы и на структуру компаний и организаций.
Постепенно превращаясь в универсальный общедоступный ресурс, искусственный интеллект сформирует будущее во многом так же, как электричество заложило фундамент современной цивилизации. Подобно тому как здания и другие инфраструктурные объекты проектируются и строятся в привязке к существующей сети электроснабжения, перспективная инфраструктура изначально будет разрабатываться с расчетом на использование возможностей ИИ. Этот принцип не ограничится физическими структурами и преобразует практически все аспекты экономики и общества. Новые фирмы и организации с момента своего создания будут ориентированы на использование возможностей ИИ. Искусственный интеллект станет важнейшим компонентом любой будущей бизнес-модели. Наши политические и социальные институты также изменятся с тем, чтобы встроить в себя этот универсальный ресурс и опираться на него.
Из всего этого следует, что ИИ в конечном счете станет таким же распространенным, как и электричество, но никогда не будет обладать той же стабильностью или предсказуемостью. Он всегда будет несоизмеримо более динамичной и подрывной силой, способной перевернуть все, чего коснется. В конце концов, интеллект — это основополагающий ресурс, фундаментальная способность, стоящая за всем, когда-либо созданным людьми. Трудно представить себе более значимое изменение, чем превращение этого ресурса в нечто повсеместно доступное в физическом и материальном отношении.
Программно-аппаратная инфраструктура ИИ
Как любому общедоступному ресурсу, искусственному интеллекту потребуется базовая инфраструктура, сеть каналов предоставления этой технологии. Она начинается, конечно, с обширной вычислительной инфраструктуры, которая уже существует, включая сотни миллионов портативных и настольных компьютеров, а также серверы мощных дата-центров и быстро растущую вселенную мобильных устройств с еще более впечатляющими возможностями. Эффективность этой распределенной вычислительной платформы как средства доставки ИИ радикально увеличилась с появлением широкого набора аппаратных и программных средств, специально разработанных для оптимизации глубоких нейронных сетей.
Это развитие началось с того момента, когда выяснилось, что определенные графические микропроцессоры, использовавшиеся в первую очередь для поддержки видеоигр, являются мощным ускорителем для приложений, связанных с глубоким обучением. Графические процессоры изначально создавались с целью ускорения вычислений, необходимых для почти мгновенной визуализации графики высокого разрешения. С 1990-х годов эти специализированные компьютерные чипы играют важную роль в высококачественных игровых приставках, в частности Sony PlayStation и Microsoft Xbox. Графические процессоры оптимизированы для быстрого параллельного выполнения огромного числа вычислений. Если у центрального процессора, обеспечивающего работу вашего ноутбука, может быть два или, возможно, четыре вычислительных «ядра», то современный высококлассный графический процессор, скорее всего, имеет тысячи специализированных ядер, которые способны одновременно выполнять расчеты с высокой скоростью. Когда исследователи обнаружили, что вычисления, необходимые для приложений глубокого обучения, в целом аналогичны тем, что используются для воспроизведения графики, графические процессоры быстро превратились в основную аппаратную платформу искусственного интеллекта.
Этот переход стал ключевым фактором, открывшим дорогу революции в сфере глубокого обучения в 2012 году. В сентябре того года команда исследователей ИИ из Торонтского университета привлекла внимание индустрии информационных технологий к глубокому обучению, продемонстрировав подавляющее превосходство на состязании по распознаванию визуальных образов ImageNet Large Visual Recognition Challenge — ежегодном мероприятии, посвященном машинному зрению. Если бы победившая команда не использовала графические процессоры для ускорения своей глубокой нейронной сети, ее решение вряд ли было бы достаточно эффективным, чтобы обеспечить победу. Мы ближе познакомимся с историей глубокого обучения в главе 4.
Команда из Торонтского университета использовала графические процессоры производства NVIDIA, компании, основанной в 1993 году и занимающейся исключительно разработкой и выпуском ультрасовременных графических чипов. После состязания ImageNet 2012 года и последовавшего широкого признания мощного синергетического эффекта соединения глубокого обучения и графических процессоров NVIDIA резко изменила траекторию своего движения, превратившись в одну из самых значимых технологических компаний, связанных с развитием искусственного интеллекта. Свидетельством того, что революция в области глубокого обучения свершилась, стала рыночная стоимость компании: с января 2012 года по январь 2020-го акции NVIDIA выросли более чем на 1500 %.
После того как проекты, связанные с глубоким обучением, перешли на графические процессоры, исследователи ИИ из ведущих технологических компаний начали разрабатывать программные средства, способные дать толчок созданию глубоких нейронных сетей. Google, Facebook и Baidu выпустили нацеленные на глубокое обучение программы с открытым исходным кодом, которые можно было бесплатно скачивать, использовать и обновлять. Самой широко используемой платформой является TensorFlow компании Google, выпущенная в 2015 году. TensorFlow — это комплексная программная платформа для глубокого обучения, предлагающая как исследователям, так и инженерам, разрабатывающим практические приложения, оптимизированный код для реализации глубоких нейронных сетей, а также разнообразные инструменты, увеличивающие эффективность разработок. Такие пакеты, как TensorFlow и PyTorch, конкурирующая платформа от Facebook, освобождают исследователей от необходимости писать и тестировать программный код, разбираясь в тонкостях, и позволяют сосредоточиться на задачах более высокого уровня при построении систем.
В процессе революции в области глубокого обучения NVIDIA и некоторые ее конкуренты перешли к разработке еще более мощных микропроцессоров, специально оптимизированных для задач глубокого обучения. Intel, IBM, Apple и Tesla сегодня создают компьютерные чипы, которые ускоряют вычисления, необходимые глубоким нейронным сетям. Чипы для глубокого обучения находят применение в бесчисленных устройствах, включая смартфоны, беспилотные автомобили и роботов, а также высокопроизводительные серверы. В результате появилась постоянно расширяющаяся сеть устройств, разработанных для поддержки искусственного интеллекта. В 2016 году Google объявила о создании собственного чипа, который назвала тензорным процессором. Эти процессоры разработаны специально для оптимизации приложений глубокого обучения, построенных на платформе TensorFlow. Первоначально Google использовала новые чипы в собственных дата-центрах, но с 2018 года их стали встраивать в серверы облачных вычислений компании. В результате клиенты, пользующиеся облачным сервисом Google, получили доступ к самой передовой функции глубокого обучения, что, похоже, и привело к доминированию этого канала распространения искусственного интеллекта.
Конкуренция
Жалоба
Напишите нам, и мы в срочном порядке примем меры.