Коллектив Авторов - Цифровой журнал «Компьютерра» № 25 Страница 7

Тут можно читать бесплатно Коллектив Авторов - Цифровой журнал «Компьютерра» № 25. Жанр: Компьютеры и Интернет / Прочая околокомпьтерная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Коллектив Авторов - Цифровой журнал «Компьютерра» № 25

Коллектив Авторов - Цифровой журнал «Компьютерра» № 25 краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Коллектив Авторов - Цифровой журнал «Компьютерра» № 25» бесплатно полную версию:
ОглавлениеБольшие новостиЭпоха Windows XP закончилась Автор: Ника ПарамоноваЗачем Google инвестирует в игры Автор: Андрей ПисьменныйПланшеты и ноутбуки — кто победит? Автор: Михаил КарповПродавец опилок претендует на 84% Facebook Автор: Михаил КарповAmazon сдает в аренду суперкомпьютеры Автор: Игорь ОсколковПроблему с плохим приёмом сигнала iPhone 4 решают чехлы Автор: Михаил КарповТерралабПромзона: Модульная кухня Автор: Николай МаслухинВещь дня: Читалка электронных книг PocketBook 360 Автор: Михаил КарповПромзона: Зонт-фильтр Автор: Николай МаслухинПромзона: Водяная ваза Автор: Николай МаслухинГрафические процессоры AMD/ATI Radeon HD 5xxx Автор: Олег НечайСофт: Converter Plus для iPhone Автор: Михаил КарповПромзона: Чайная акула Автор: Николай МаслухинРидберговские атомы: всё ближе к квантовому компьютеру Автор: Олег НечайСофт: Фотоменеджер Shotwell для Linux Автор: Крестников ЕвгенийПромзона: Музыкальный фаст-душ Автор: Николай МаслухинЭлектронная бумага: версия Nemoptic Автор: Олег НечайВ чём секрет защищённости Internet Explorer 8 Автор: Ника ПарамоноваMDOP: оптимизация в корпоративных средах Автор: Ника ПарамоноваСвоя играВасилий Щепетнёв: Предисловие к непрочитанному Автор: Василий ЩепетневКафедра Ваннаха: Человечество у колыбели искусственного разума Автор: Ваннах МихаилВасилий Щепетнёв: Код Чехова Автор: Василий ЩепетневКивино гнездо: О «взломе» Skype Автор: Берд КивиКафедра Ваннаха: Варвары в постиндустриальном мире Автор: Ваннах МихаилНеживой журнал: LiveJournal отстаёт от соперников Автор: Андрей ПисьменныйВасилий Щепетнёв: Код Чехова — слепое пятно Автор: Василий ЩепетневИнтерактивДмитрий Шуваев (Pirate Pay) о выгоде для провайдеров Автор: Юрий Ильин"Яндекс" научили искать в режиме реального времени Автор: Андрей ПисьменныйБлогиАнатолий Вассерман: Газогидраты Автор: Анатолий ВассерманАнатолий Вассерман: Подгонка под гороскоп Автор: Анатолий ВассерманReaDitorialИнтернет – страна многократных отражений Автор: Алексей СысоевГолубятня-ОнлайнГолубятня: Сидр №5 Автор: Сергей ГолубицкийГолубятня: Интерактив №4 Автор: Сергей ГолубицкийГолубятня: Сергей Комаров Автор: Сергей Голубицкий

Коллектив Авторов - Цифровой журнал «Компьютерра» № 25 читать онлайн бесплатно

Коллектив Авторов - Цифровой журнал «Компьютерра» № 25 - читать книгу онлайн бесплатно, автор Коллектив Авторов

Расчёт чаевых. Учитывается число людей, проценты на чаевые, а также показывается, сколько в целом денег достанется официанту. Достаточно ввести сумму с чека.

Расход электроэнергии. Для того чтобы узнать, сколько тратит конкретное устройство, нужно указать, сколько часов в день оно включено, его мощность и цену за киловатт-час.

Это, конечно же, не все шаблоны, все бы тут просто не поместились. Поскольку это приложение бесплатно, оно, определённо, должно быть на каждом iPhone.

Телефон редакции: (495) 232-2263E-mail редакции: По вопросам размещения рекламы обращаться к Елене Агапитовой по телефону +7 (495) 232-2263 или электронной почте [email protected]@computerra.ru

К оглавлению

Промзона: Чайная акула

Николай Маслухин

Опубликовано 15 июля 2010 года

Аргентинский дизайнер Пабло Матэода предлагает внести разнообразие в ежедневный процесс заваривания чая. Специально для этого он изобрёл чайную акулу.

Это всё то же ситечко, только с «акульим плавником». Дизайнер предлагает использовать для заварки красный чай, так как он отлично имитирует расплывающееся по воде пятно крови жертвы, попавшейся в зубы хищной рыбе.

Конечно, ничего нового в таком концепте нет. «Компьютерра» уже писала о чем-то похожем пару месяцев назад. Правда, там на ситечко приходилось дуть и выглядело оно чуть менее интересно, чем это.

К оглавлению

Ридберговские атомы: всё ближе к квантовому компьютеру

Олег Нечай

Опубликовано 15 июля 2010 года

Учёные нашли новый способ управления квантовыми состояниями твёрдых частиц, и он может изменить общепринятый подход к квантовым вычислениям. Об этом говорится в статье, опубликованной в журнале Nature группой физиков из Великобритании (Лондонский центр нанотехнологий) и Нидерландов (Институт физики плазмы Фонда фундаментальных исследований материи).

В ходе экспериментов с легированным кремнием обнаружилось, что существует возможность управлять атомами твёрдых тел, облучая их волнами с частотой один терагерц, в результате чего атомы начинают колебаться между разными состояниями так же, как это происходит в атомах водорода. Несмотря на то, что для опытов применялось нестандартное оборудование, учёные надеются, что этот новый уровень управления когерентностью позволит по-иному создавать запутанность квантовых состояний и более точно манипулировать квантовой информацией, содержащейся в возбуждённых атомах.

Новая методика была открыта в процессе квантовых манипуляций с различными частицами при помощи лазера — речь идёт о захвате фотонов, запутывании их и пересылке на большие расстояния и даже о проведении простых квантовых вычислений. Однако получаемые при этом квантовые состояния часто нестабильны и ими сложно управлять, что приводит к ошибкам при переносе информации и вычислениях.

Для решения проблемы было решено использовать хорошо известное квантовое состояние — Ридберговское состояние атомов твёрдых тел. Это состояние описывается той же формулой, что объясняет свойства свободных атомов водорода — чтобы распространить её действие на более крупные атомы, можно воспользоваться одной лазейкой.

У Ридберговских атомов есть любопытное свойство: в основном состоянии они слишком малы, чтобы взаимодействовать друг с другом. Такие атомы могут быть запутаны для использования в квантовых вычислениях, только находясь в возбуждённом состоянии, а их основные состояния остаются независимыми. Отсюда возникла идея нового способа передачи квантовой информации.

Атомы включений в некоторый материал могут принимать Ридберговское состояние в том случае, если у них ровно на один валентный электрон больше, чем в атомах материала-носителя. Поэтому для этого отлично подходит кремний, легированный фосфором. В ходе эксперимента было решено использовать облучение фосфорных включений в терагерцевом диапазоне, чтобы с помощью лёгких колебаний переключать близко расположенные Ридберговские атомы между двумя состояниями.

Чтобы доказать, что в результате эксперимента был действительно получен контроль над фосфором на квантовом уровне, нужно зафиксировать два типа активности в атомах. Первый — так называемые осцилляции или биения Раби — частота волны, показывающая, что атом под влиянием излучения лазера колеблется между основным и возбуждённым состояниями. Если выбрана правильная частота, она сможет вызвать суперпозицию и возбужденную волновую функцию с чётким и хорошо распознаваемым волновым пакетом.

Во-вторых, требовалось обнаружить фотонное эхо. Это явление возникает при воздействии на частицы при помощи лазера. После первого импульса частицы переходят в когерентное возбуждённое состояние и со временем возникает расфазировка колебаний. Второй импульс приводит к фазировке и вызывает выплеск энергии частиц, который и называется фотонным эхо-импульсом.

В этом импульсе, как в «чёрном ящике» самолёта, описываются внешние воздействия на атом, и его изучение позволяет с точностью определить, сколько времени требуется на расфазировку волновых функций атомов, насколько сильны колебания и, в конечном счёте, как долго их можно использовать для хранения или передачи квантовой информации.

Для проведения эксперимента была задействована лазерная установка FELIX (Free Electron Laser for Infrared Experiments), расположенная в городе Ньювегейне в Нидерландах. Исследователям удалось создать лазерные импульсы, способные быстро и точно управлять атомами фосфора. При работе на терагерцевой частоте были экспериментально получены и биения Раби, и фотонное эхо, доказывающие эффективность опыта.

Анализ генерируемого атомами фотонного эха показал, что на расфазировку требуется 160 пикосекунд, при этом электроны в атомах фосфора колеблются между состояниями каждые 100 фемтосекунд. Это означает, что если атом переносит какую-либо информацию, у пользователя теоретически будет свыше тысячи возможностей её считать до того, как волновая функция исказит данные до неузнаваемости.

Опыт продемонстрировал потенциальные возможности лазера не только для передачи информации между компьютерами но и для обработки этой информации внутри вычислительной системы. В данном случае для приведения электрона атомов фосфора в кремнии в состоянии суперпозиции (то есть одновременно в два квантовых состояния) был использован сверхинфракрасный лазер, выдающий очень короткие импульсы высокой интенсивности. Затем было доказано, что можно управлять этим состоянием, добиваясь выброса световой энергии (фотонного эха) в чётко определённое время.

Значение разработки этого метода управления квантовыми состояниями для будущего квантовых вычислений можно коротко описать так. В сущности, учёные из Великобритании и Нидерландов создали простую модель кота Шрёдингера, который одновременно и жив, и мёртв, при помощи дешёвого материала, широко использующегося в производстве компьютерных микросхем. Иными словами, мы ещё на один шаг приблизились к созданию квантового компьютера.

Движение электронов в кремнии. Электрон вращается на орбите атома фосфора, встроенного в кремниевую решётку, показанную серебристым цветом. Положение электрона в обычном состоянии показано жёлтым. Импульс лазера может изменить его состояние так, как показано зелёным. Первый импульс слева помещает электрон в состояние суперпозиции (два одновременных квантовых состояния), которое можно контролировать вторым импульсом слева. В результате мы получаем правый импульс — фотонное эхо, — который мы можем проанализировать, и получить информацию о суперпозиции).

К оглавлению

Софт: Фотоменеджер Shotwell для Linux

Крестников Евгений

Опубликовано 15 июля 2010 года

Недавно в Сети появилась информация об очередной замене в дистрибутиве Ubuntu: в следующем релизе стандартным менеджером фотографий станет Shotwell. Ещё раньше им заменили Gthumb и F-Spot в Fedora 13. Многие пользователи среды GNOME недовольны менеджером F-Spot: основанная на технологии Mono программа работает медленно, а её интерфейс не всегда интуитивно понятен. Легковесный Shotwell может стать хорошей заменой, тем более, что проект активно развивается — в последней версии программы появилось много новых функций и базовая поддержка форматов RAW (таких как CR2 и DNG), а также PNG.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.