Елена Николаева - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник Страница 12

Тут можно читать бесплатно Елена Николаева - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник. Жанр: Детская литература / Детская образовательная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Елена Николаева - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Елена Николаева - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Елена Николаева - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник» бесплатно полную версию:
Содержит основные разделы психофизиологии. Раскрыты биологические основы психики, методы получения психофизиологической информации, психофизиологические механизмы адаптивного поведения. Освещены психофизиология восприятия, движения, бодрствования, сна, внимания, неосознаваемых и осознанных процессов, эмоций, памяти и научения. Представлены психофизиологические подходы к анализу мышления, интеллекта и креативности. В отличие от имеющихся аналогов учебник дополнен темами, характеризующими психофизиологию пола, старения, адаптивного поведения, а также паранатальную психофизиологию. Книга богато иллюстрирована, имеет справочный аппарат, включающий библиографию, предметный и именной указатели.Для студентов высших учебных заведений, обучающихся по психологическим и биологическим специальностям. Может использоваться в учебном процессе по педагогическим и медицинским направлениям и специальностям. Представляет интерес не только для ученых и специалистов, но и для широкого круга читателей.3-е издание, переработанное и дополненное.

Елена Николаева - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник читать онлайн бесплатно

Елена Николаева - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник - читать книгу онлайн бесплатно, автор Елена Николаева

Использование томографов позволило изучать строение и функционирование мозга прижизненно, что существенно облегчило процедуру исследования этого органа и понимания процессов, происходящих в нем.

Компьютерная томография

Компьютерная томография – это современный метод, позволяющий визуализировать особенности строения мозга человека с помощью компьютера и рентгеновской установки (рис. 2.13).

Рис. 2.13. Сканирование с помощью метода компьютерной томографии (Carlson, 1992).

В установке, предназначенной для компьютерной томографии, источник рентгеновских лучей вращается в одной плоскости вокруг головы, а рентгеновские детекторы постоянно регистрируют интенсивность проходящего сквозь голову излучения. Компьютерные программы преобразуют полученные данные в рисунки срезов мозга различной глубины (рис. 2.14). Толщина подобных срезов может не превышать 5 мм.

Рис. 2.14. Сканирование с помощью метода компьютерной томографии.

(а) Снимок, полученный на компьютерном томографе; (б) Фотография среза мозга на том же уровне, что и на снимке, приведенном на рисунке (а) (Carlson, 1992).

Для улучшения качества изображения перед исследованием пациенту вводят контрастное вещество. Особенно эффективна компьютерная томо графия для исследования повреждений мозга, например, вследствие инсульта (рис. 2.15), рассеянного склероза, опухолей. Кроме очевидной необходимости этого метода для хирургического исследования перед операциями он представляет значительный интерес для психофизиологов и нейрофизиологов, которые изучают когнитивные процессы и поведение людей, имеющих повреждения мозга.

Информативность томограмм увеличивается благодаря применению контрастных веществ, например, верографина (препарата, содержащего йод). Полученная информация в виде снимков может храниться на магнитных носителях, что позволяет пересылать их по каналам компьютерной связи на любые расстояния для консультации специалистов (Лалаянц, Милованова, 1991).

Рис. 2.15. Снимки мозга больных, перенесших инсульт на правой половине мозга, полученные с помощью метода компьютерной томографии (Carlson, 1992).

Позитронно-эмиссионная томография (ПЭТ)

Этот метод позволяет оценить метаболическую активность в различных участках мозга. Он во многом схож с авторадиографией: испытуемый проглатывает радиоактивное соединение, позволяющее проследить изменения кровотока в том или ином отделе мозга, что косвенно указывает на уровень метаболической активности в нем. Таким радиоактивным соединением может быть 2-дезоксиглюкоза, имеющая одну из меток – радиоактивные изотопы углерода (С11), фтора (F18), кислорода (О15), азота (N13).

Время полураспада этих веществ составляет от 110 сек для фтора до 120 сек для кислорода. Метаболически активные участки мозга с большей интенсивностью поглощают 2-дезоксиглюкозу из крови, которая в отличие от обычной глюкозы не включается в метаболические процессы и только накапливается в мозге. Радиоактивные изотопы излучают позитроны, которые, встречая в мозге электроны, уничтожаются (аннигилируют), излучая 2 гамма-луча, направляющиеся в противоположные стороны. В специальной камере монтируются детекторы гамма-лучей, собранные в кольца. В камеру помещается голова испытуемого, радиоактивные молекулы 2-дезоксиглюкозы фиксируются сканером (Plum e. a., 1976) (рис. 2.16). Полученные данные обрабатываются компьютером, и на основе результатов воссоздается картина метаболически активных участков мозга.

Рис. 2.16. Результаты ПЭТ сканирования мозга здорового человека в различных экспериментальных ситуациях (Phelps, Mazziotta, 1985).

Особенностью ПЭТ является то, что она позволяет снимать «динамические» картины функционирования мозга, решающего ту или иную задачу или пребывающего во сне. Использование кислорода позволяет получать характеристики регионального кровотока, объема крови, потребления кислорода. Однако и кислород, и глюкоза попадают в мозг с током крови, изменение которого происходит иногда в течение нескольких минут. Поэтому быстропротекающие процессы пока этим методом фиксировать не удается.

Визуализация строения мозга с помощью метода ядерно-магнитного резонанса

Метод ядерно-магнитного резонанса (ЯМР) позволяет визуализировать строение мозга, как и при компьютерной томографии, но он не связан с использованием радиоактивных лучей. Вокруг головы испытуемого создается очень сильное магнитное поле, которое воздействует на ядра атомов водорода, имеющих внутреннее вращение. В обычных условиях оси вращения каждого ядра имеют случайное направление. В магнитном поле они меняют ориентацию в соответствии с силовыми линиями этого поля. Выключение поля ведет к тому, что атомы утрачивают единое направление осей вращения и вследствие этого начинают излучать энергию. Эту энергию фиксирует датчик, а информация передается на компьютер.

Повторение циклов воздействия магнитного поля и его выключения дает достаточное количество данных для того, чтобы на компьютере было создано послойное изображение мозга. Для повышения разрешающей способности таких томографов иногда также используются контрастные вещества, содержащие таллий и гадолиний (Black e. a., 1989).

ЯМР-томограф высокого разрешения позволяет видеть клеточные структуры коры головного мозга при жизни человека (Press e. a., 1989). Наложение ПЭТ-томограмм на ЯМР-изображения дает возможность более тонко дифференцировать те или иные отделы коры и подкорковых структур (Лалянц, Милованова, 1991).

В последнее время появилась возможность повысить разрешающую способность ЯМР-томографов с помощью использования моноклональных антител против специфического антигена. В этом случае антиген «метят» веществом, детектируемым томографом. Это позволяет с большей точностью судить о распределении в специфических областях мозга рецепторов к нейромедиаторам (Pollit, 1989).

Рис. 2.17. Снимки мозга, полученные с помощью метода ядерно-магнитного резонанса (Carlson, 1992).

Поскольку водород содержится не в одинаковых концентрациях в разных тканях, что зависит как от структуры ткани, так и от ее метаболической активности, то при сканировании излучения этот факт используется для создания визуальной картины тканей. Получаемые с помощью указанного метода картины яснее и четче, чем изображения, представленные методом компьютерной томографии. Однако использование этого метода является более дорогим по сравнению с другими (рис. 2.17).

Реоэнцефалография

Реоэнцефалография (РЭГ) представляет собой метод исследования кровообращения головного мозга человека, основанный на регистрации изменений пассивных электрических характеристик между электродами, фиксированными на кожных покровах головы (Москаленко, 1977). Идея, положенная в основу метода, состоит в том, что электрические параметры тканей мозга различны, поэтому любые изменения удельных соотношений в закрытой черепной коробке будут отражаться на комплексном электрическом сопротивлении.

Наиболее распространенная модификация этого метода основана на анализе динамики амплитуды и формы пульсовых колебаний электрического сопротивления при различных состояниях системы внутричерепного кровообращения (рис. 2.18). Приборы для регистрации РЭГ представляют собой приставку с внутренним усилителем к электроэнцефалографу или электрокардиографу.

Рис. 2.18. Схема расположения тканей между электродами, наложенными на кожные покровы головы человека (а), и ее электрический эквивалент (б).

1 – кожа, 2 – мягкие ткани головы, 3 – кости черепа, 4 – пространства, заполненные ликвором, 5 – ткань мозга, 6 – электроды: Rк и Cк – активное и емкостное сопротивления рогового слоя кожи, Rкс и Cкс – то же для костей, Rм – сопротивление мягких тканей, окружающих череп, R к – поверхностное сопротивление кожи (Москаленко, 1977).

Поскольку в РЭГ для оценки сопротивления тканей применяют токи высокой частоты, размер электродов не имеет существенного значения, так как их поляризация практически отсутствует. Используют пластинчатые овальные или круглые электроды из различных материалов, надежно фиксируя их на голове (рис. 2.19). Информативность полученных показателей зависит от конкретных задач исследования (рис. 2.20).

Рис. 2.19. Варианты расположения электродов для РЭГ на кожных покровах головы.

1 – бифронтальное, 2 – бимастоидальное, 3 – окулоокципитальное, 4 – фронтоокципитальное, 5 – фронтомастоидальное, 6 – окуломастоидальное отведения (Москаленко, 1977).

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.