Яков Перельман - Загадки, фокусы и развлечения (сборник) Страница 6
- Категория: Детская литература / Детская образовательная литература
- Автор: Яков Перельман
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 25
- Добавлено: 2019-02-06 11:41:32
Яков Перельман - Загадки, фокусы и развлечения (сборник) краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Яков Перельман - Загадки, фокусы и развлечения (сборник)» бесплатно полную версию:Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.
Яков Перельман - Загадки, фокусы и развлечения (сборник) читать онлайн бесплатно
за 19-ю тысячу … 2621 р. 44 коп.
за 20-ю тысячу … 5242 р. 88 коп.
за 21-ю» тысячу … 10485 р. 76 коп.
за 22-ю» тысячу … 20971 р. 52 коп.
за 23-ю» тысячу … 41943 р. 04 коп.
За одну только 23-ю тысячу миллионер уплатил больше, чем получит за весь месяц!
Настала последняя неделя месяца – и эти 7 дней в конец разорили нашего миллионера. Действительно, он уплатил:
за 24-ю тысячу … 83886 р. 08 коп.
за 25-ю тысячу … 167772 р. 16 коп.
за 26-ю тысячу … 335544 р. 32 коп.
за 27-ю тысячу … 671088 р. 64 коп.
за 28-ю тысячу … 1342177 р. 28 коп.
за 29-ю тысячу … 2684354 р. 56 коп.
за 30-ю тысячу … 5368709 р. 12 коп.Когда гость ушел в последний раз, миллионер подсчитал, во что обошлись ему столь дешевые на первый взгляд 30 тысяч рублей. Оказалось, что уплачено было незнакомцу
10737418 р. 23 коп.
Без малого 11 миллионов… А ведь началось с одной копейки! Незнакомец мог бы приносить даже по сто тысяч в день – и все-таки не прогадал бы. IV
Прежде чем кончить с этой историей, покажу еще, каким способом можно облегчить подсчет убытков миллионера, т. е. как скорее всего выполнить сложение ряда чисел:
1 + 2 + 4 + 8 + 16 + 32 + 64 и т. д.
Нетрудно подметить следующую особенность этих чисел:
2 = 1 + 1
4 = (1 + 2) + 1
8 = (1 + 2 + 4) + 1
16 = (1 + 2 + 4 + 8) + 1
32 = (1 + 2 + 4 + 8 + 16) + 1
и так далее.Мы видим, другими словами, что каждое число этого ряда равно всем предыдущим, вместе взятым, да еще одна единица. Поэтому, когда нужно сложить все числа ряда, например, от 1 до 32768, то мы лишь прибавляем к последнему числу (32768) сумму всех предыдущих (т. е. 32768 – 1). Получаем 65535.
Этим способом мы можем подсчитать убытки нашего миллионера очень быстро, как только узнаем, сколько уплатил он в последний день. Его последний платеж был 5368709 р. 12 коп. Поэтому, сложив 5368709 р. 12 коп. и 5368709 р. 11 коп., получаем сразу искомый результат: 10737418 р. 23 к.
Городские слухи
Удивительно, как быстро расходятся по городу слухи! Иной раз и двух часов не пройдет со времени какого-нибудь интересного происшествия, случившегося на глазах всего нескольких зрителей, – а новость уже облетела весь город: все о ней знают, все слыхали.
Эта необычайная быстрота кажется поразительной, прямо загадочной. Однако, если подойти к делу с подсчетом, то станет ясно, что ничего чудесного и непостижимого здесь нет: все объясняется свойствами чисел, а не какими-то таинственными особенностями самих слухов.
IДля примера рассмотрим хотя бы такой случай. В губернский город приехал в 8 часов утра житель столицы и привез с собою свежую, всем интересную новость. В гостинице, где приезжий остановился, он сообщил эту новость только троим местным жителям; это заняло, скажем, четверть часа.
Итак, в 8 1/4 часа утра новость была известна всего только четверым людям: приезжему и трем местным жителям.
Узнав интересную новость, каждый из троих граждан поспешил рассказать ее 3-м другим. Это потребовало, допустим, также четверти часа – срок не слишком короткий для передачи слуха. Значит, спустя полчаса после прибытия новости в город о ней знало уже 4 + 3 x 3 = 13 человек.
Каждый из 9-ти вновь узнавших в такой же срок поделился с 3-мя другими гражданами, так что к 8 3/4 часам утра новость стала известна
13 + 3 x 9 = 40 гражданам.
Если слух распространяется по городу и далее таким же способом, т. е. каждый узнавший про новость успевает в ближайшие четверть часа сообщить ее 3 согражданам, то осведомление города будет происходить по следующему расписанию:
в 9 час. новость узнают 40 + 3 x 27 = 121 челов.
в 9 1/4 час. новость узнают 121 + 3 x 81 = 364 челов.
в 9 1/2 час. новость узнают 364 + 3 x 243 = 1093 челов.Спустя полтора часа от начала движения слуха новость будут знать, как видим, всего около 1100 человек. Это, казалось бы, немного для города с населением в 50.000, и можно, пожалуй, подумать, что новость не скоро еще станет известна всем его жителям. Однако проследим далее за движением слуха:
в 9 3/4 час. новость узнают 1093 + 3 x 729 = 3280 челов.
в 10 час. новость узнают 3280 + 3 x 2187 = 9841 челов.Еще спустя четверть часа – уже больше половины города будет посвящено в новость: 9841 + 3 x 6561 = 29524.
И следовательно, ранее чем к половине одиннадцатого дня поголовно все жители будут знать новость, которая в 8 часов утра была известна только одному человеку.
II
Подсчет наш сводился, в сущности, к тому, что мы сложили такой ряд чисел:
1 + 3 + 3 x 3 + 3 x 3 x 3 + 3 x 3 x 3 x 3 + и т. д.Нельзя ли узнать эту сумму как-нибудь короче, наподобие того, как определяли мы на стр. 54 сумму чисел ряда 1 + 2 + 4 + 8 + и т. д.? Это возможно, если принять в соображение следующую особенность складываемых здесь чисел:
3 = 1 x 2 + 1
9 = (1 + 3) x 2 + 1
27 = (1 + 3 + 9) x 2 + 1
81 = (1 + 3 + 9 + 27) x 2 + 1
и так далее.Иначе говоря: каждое число этого ряда равно удвоенной сумме всех предыдущих чисел да еще одна единица.
Отсюда следует, что если нужно найти сумму всех чисел такого ряда от 1 до какого-либо числа, то достаточно лишь прибавить к этому последнему числу его половину (предварительно откинув единицу). Например, сумма чисел
1 + 3 + 9 + 27 + 81 + 243 + 729
равна 729 + половина от 728, т. е. 729 + 364 = 1093.
IIIВ нашем случае каждый узнавший новость передавал ее только троим гражданам. Но если бы жители города были более словоохотливы и сообщали услышанную новость не 3-м, а, например, 5-ти или даже 10-ти другим, то слух распространялся бы, конечно, еще быстрее. Так, при передаче пятерым картина осведомления города была бы такая:
в 8 час … 1 чел.
в 8 1/4 час … 1 + 5 = 6 чел.
8 1/2 час … 6 + 5 x 5 = 31 чел.
8 3/4 час … 31 + 25 x 5 = 156 чел.
9 час … 156 + 125 x 5 = 781 чел.
9 1/4 час … 781 + 625 x 5 = 3906 чел.
9 1/2 час … 3906 + 3125 x 5 = 19531 чел.Ранее чем в 9 3/4 часа утра новость уже будет известна всему 50-тысячному населению города.
Еще быстрее распространится слух, если каждый, услышавший новость, передаст о ней 10-ти другим. Тогда получим такой любопытный ряд чисел:
8 час … 1
8 1/4 час … 1 + 10 = 11
8 1/2 час … 11 + 100 = 111
8 3/4 час … 111 + 1000 = 1111
9 час … 1111 + 10000 = 11111Следующее число этого ряда, очевидно, 111111; это показывает, что весь город узнает про новость уже в самом начале 10-го часа утра. Слух разнесется почти в один час!
Награда
Вот что, по преданию, произошло много веков тому назад в древнем Риме [2] .
I
Полководец Теренций по приказу императора совершил победоносный поход и с трофеями вернулся в Рим. Прибыв в столицу, он просил допустить его к императору.
Император ласково принял полководца, сердечно благодарил его за военные услуги империи и обещал в награду дать ему высокое положение в сенате.
Но Теренцию нужно было не это. Он возразил:
– Много побед одержал я, чтобы возвысить твое могущество, государь, и окружить имя твое славой. Я не страшился смерти, и будь у меня не одна, а много жизней, я все их принес бы тебе в жертву. Но я устал воевать; прошла молодость, кровь медленнее бежит в моих жилах. Наступила пора отдохнуть в доме моих предков и насладиться радостями домашней жизни.
– Чего же желал бы ты от меня, Теренций? – спросил император.
– Выслушай со снисхождением, государь. За долгие годы военной жизни, изо дня в день обагряя меч свой кровью, я не успел устроить себе денежного благополучия. Я беден, государь…
– Продолжай, храбрый Теренций.
– Если хочешь даровать награду скромному слуге твоему, – продолжал ободренный полководец, – то пусть щедрость твоя поможет мне дожить жизнь в достатке и мире подле домашнего очага. Я не ищу почестей и высокого положения во всемогущем сенате. Я желал бы удалиться от власти и от жизни общественной, чтобы отдохнуть на покое. Государь, дай мне денег для обеспечения остатка моей жизни.
Император, – гласит предание, – не отличался широкой щедростью. Он любил копить деньги для себя и скупо тратил их на другие нужды. Просьба полководца заставила его задуматься.
– Какую же сумму, Теренций, считал бы ты для себя достаточной? – спросил он.
– Миллион динариев, государь.
Снова задумался император. Полководец ждал, опустив голову. Наконец, император заговорил:
– Доблестный Теренций! Ты великий воин, и славные подвиги твои заслужили щедрой награды. Я дам тебе богатство. Завтра в полдень ты услышишь здесь мое решение.
Теренций поклонился и вышел.
II
На следующий день в назначенныый час полководец явился во дворец императора.
– Привет тебе, храбрый Теренций! – сказал император.
Теренций смиренно наклонил голову.
– Я пришел, государь, чтобы выслушать твое решение. Ты милостиво обещал вознаградить меня.
Император ответил:
– Я не хочу, чтобы такой благородный воитель, как ты, получил за свои подвиги жалкую награду. Выслушай же меня. В моем казначействе лежит 5 миллионов медных брассов [3] . Теперь внимай моим словам. Ты войдешь в казначейство, возьмешь одну монету в руки, вернешься сюда и положишь ее к моим ногам. На другой день вновь пойдешь в казначейство, возьмешь монету, равную двум брассам и положишь здесь рядом с первой. В третий день принесешь монету, стоящую 4 брасса, в четвертый – стоящую 8 брассов, в пятый – 16, и так далее, все удваивая стоимость монеты. Я прикажу ежедневно изготовлять для тебя монеты надлежащей ценности. И пока хватит у тебя сил поднимать монеты, ты будешь выносить их из моего казначейства. Никто не должен помогать тебе, ты можешь пользоваться только собственными силами. И когда заметишь, что уже не можешь больше поднять монету – остановись: уговор наш кончится, но все монеты, которые удастся тебе из казначейства вынести, останутся навсегда твоими и послужат тебе наградой.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.