Загадки и диковинки в мире чисел - Яков Исидорович Перельман Страница 7
- Категория: Детская литература / Детская образовательная литература
- Автор: Яков Исидорович Перельман
- Страниц: 34
- Добавлено: 2023-04-26 07:12:20
Загадки и диковинки в мире чисел - Яков Исидорович Перельман краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Загадки и диковинки в мире чисел - Яков Исидорович Перельман» бесплатно полную версию:Занимательные рассказы о числах-великанах и числах – карликах, о системах счисления, об арифметических парадоксах и головоломках разнообразят школьную программу и сделают интересным ваш досуг.
Загадки и диковинки в мире чисел - Яков Исидорович Перельман читать онлайн бесплатно
1. Как предполагал репетитор решить задачу алгебраически?
2. Как должен был ее решить Петя?
3. Как решил ее отец Пети на счетах «по-неучено-му»? На первые два вопроса, вероятно, без труда ответят если не все, то, во всяком случае, – многие читатели нашей книжки. Третий вопрос не так прост. Но рассмотрим три наши задачи по порядку.
1. Семиклассник-репетитор готов был решать задачу «с иксом и игреком», будучи уверен, что задача – «собственно говоря, алгебраическая». И он, надо думать, легко справился бы с ней, прибегнув к помощи системы уравнений, – только не неопределенных, как ему показалось. Составить два уравнения с двумя неизвестными для данной задачи очень нетрудно; вот они:
х + у=38, 5х + 3у = 540,
где × и у — числа аршин синего и черного сукна.
2. Однако задача довольно легко решается и арифметически. Если бы вам пришлось решать ее, она, конечно, не затруднила бы вас. Вы начали бы с предположения, что все купленное сукно было синее, – тогда за всю партию в 138 аршин синего сукна пришлось бы уплатить 5 × 138 = 690 рублей; это на 690–540= 150 рублей больше того, что было заплачено в действительности. Разница в 150 рублей указывает, что в партии имелось и более дешевое черное сукно по 3 рубля аршин. Дешевого сукна было столько, что из двухрублевой разницы на 1 аршине составилось 150 рублей: очевидно, число аршин черного сукна определится, если разделить 150 на 2. Получаем ответ – 75; вычтя эти 75 аршин из общего числа 188 аршин, узнаем, сколько было синего сукна: 138 – 75 = 63. Так и должен был решать задачу Петя.
3. На очереди у нас третий вопрос: как решил задачу Удодов-старший?
В рассказе говорится об этом очень кратко: «Он щелкает на счетах, и у него получается 75 и 63, что и нужно было».
В чем же, однако, состояло это «щелканье на счетах»? Другими словами, каков способ решения задачи с помощью счетов?
Разгадка такова: злополучная задача решается на счетах тем же приемом, что и на бумаге, – тем же рядом арифметических действий. Но только выполнение их значительно упрощается благодаря преимуществам, которые наши русские счеты предоставляют всякому, умеющему с ними обращаться. Очевидно, отставной губернский секретарь Удодов хорошо умел считать на счетах, потому что их косточки быстро, без помощи алгебры, открыли ему то, чего репетитор-семиклассник добивался узнать «с иксом и игреком». Вот какие действия должен был проделать на счетах Петин отец.
Прежде всего ему нужно было, как мы знаем, умножить 138 на 5. Для этого он, по правилам действий на счетах, умножил сначала 138 на 10, – т. е. просто перенес 138 одной проволокой выше, – а затем разделил это число пополам, опять-таки на счетах же. Деление начинают снизу: откидывают половину косточек, отложенных на каждой проволоке; если число косточек на данной проволоке нечетное, то выходят из затруднения, «раздробляя» одну косточку этой проволоки на 10 нижних. В нашем, например, случае делят 1380 пополам так: на нижней проволоке, где отложено 8 косточек, откидывают 4 косточки (4 десятка), на средней проволоке из 3 косточек откидывают 1, а оставшуюся 1 косточку заменяют мысленно десятью нижними и делят пополам, добавляя 5 десятков к косточкам нижней; на верхней проволоке раздробляют одну косточку, прибавляя 5 сотен к косточкам средней проволоки. В результате на верхней проволоке совсем не остается косточек; на средней 1+5 = 6 сотен; на нижней 4 + 5 = 9 десятков. Итого, 690 единиц. Выполняется все это, конечно, автоматически.
Далее Удодову-старшему нужно было из 690 вычесть 540. Как проделывается это на счетах – всем известно.
Наконец, полученную разность, 150, оставалось разделить пополам: Удодов откинул из 5 косточек (десятков) 2, отдав 5 единиц нижнему ряду косточек; потом из 1 косточки на проволоке сотен отдал 5 десятков нижнему ряду: получилось 7 десятков и 5 единиц, т. е. 75.
Все эти простые действия выполняются на счетах гораздо скорее, чем тут описано.
Русские счеты
Есть много полезных вещей, которых мы не умеем ценить только потому, что они, постоянно находясь у нас под руками, превратились в самый обыкновенный предмет нашего домашнего обихода. К числу таких недостаточно ценимых вещей принадлежат, бесспорно, и наши конторские счеты – русская народная счетная машина, представляющая собою лишь видоизменение знаменитого «абака», или «счетной доски» наших отдаленных предков. Все древние народы – египтяне, греки, римляне – употребляли при вычислениях счетный прибор «абак», очень походивший на наши десятикосточковые счеты[9]. В средние века вплоть до XVI века подобные приспособления были широко распространены в Европе. Но в наши дни видоизмененный абак – счеты – сохранился, кажется, только в России да в Китае (семикосточковые счеты, «суан-пан»). Запад не знает десятикосточковых счетов, – вы не найдете их ни в одном магазине Европы; быть может, потому-то мы и не ценим этого счетного прибора так высоко, как он заслуживает, смотрим на него как на какую-то наивную кустарную самодельщину в области счетных приборов.
Между тем мы вправе были бы гордиться нашими десятикосточковыми счетами, так как при изумительной простоте своего устройства они, по достигаемым на них результатам, могут соперничать в некоторых отношениях даже со сложными, дорогостоящими счетными машинами западных стран. В умелых руках этот нехитрый прибор делает порою настоящие чудеса. Иностранцы, впервые знакомящиеся с нашими сметами, охотно признают это и ценят их несравненно выше, нежели мы сами. Специалист, заведовавший одной из крупных русских фирм по продаже счетных машин, рассказывал мне, что ему не раз приходилось изумлять русскими счетами иностранцев, привозивших ему в контору образцы сложных счетных машин. Он устраивал состязание между двумя счетчиками, из которых один работал на дорогой заграничной «аддиционной» машине (т. е. машине для сложения), другой же пользовался обыкновенными счетами. И нередко случалось, что последний – правда, большой мастер своего дела, – брал верх над обладателем заморской машины в быстроте и точности вычислений. Бывало и так, что иностранец, пораженный быстротой работы на счетах, сразу же сдавался и складывал свою сложную машину обратно в чемодан, не надеясь продать в России ни одного экземпляра.
– К чему вам дорогие счетные машины, если вы так искусно считаете при помощи ваших дешевых счетов! – говорили нередко представители иностранных фирм.
А ведь заграничные машины в сотни раз дороже наших конторских счетов!
Правда, на русских счетах нельзя производить всех тех действий, которые
Жалоба
Напишите нам, и мы в срочном порядке примем меры.