Загадки и диковинки в мире чисел - Яков Исидорович Перельман Страница 9
- Категория: Детская литература / Детская образовательная литература
- Автор: Яков Исидорович Перельман
- Страниц: 34
- Добавлено: 2023-04-26 07:12:20
Загадки и диковинки в мире чисел - Яков Исидорович Перельман краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Загадки и диковинки в мире чисел - Яков Исидорович Перельман» бесплатно полную версию:Занимательные рассказы о числах-великанах и числах – карликах, о системах счисления, об арифметических парадоксах и головоломках разнообразят школьную программу и сделают интересным ваш досуг.
Загадки и диковинки в мире чисел - Яков Исидорович Перельман читать онлайн бесплатно
«Второй способ деления называется в Венеции[13] лодкой или галерой, вследствие некоторого сходства фигуры, получающейся при этом, потому что при делении некоторых родов чисел составляется фигура, похожая на лодку, а в других на галеру, которая в самом деле красиво выглядит; галера получается иной раз хорошо отделанная и снабженная всеми принадлежностями – выкладывается из чисел так, что она действительно представляется в виде галеры с кормою и носом, мачтою, парусами и веслами»…
Читается это очень весело: так и настраиваешься скользить по числовому морю на парусах арифметической галеры. Но хотя старинный итальянский математик и рекомендует этот способ как – «самый изящный, самый легкий, самый верный, самый употребительный и самый общий из существующих, пригодный для деления всех возможных чисел», – все же я не решаюсь его изложить здесь, опасаясь, что даже терпеливый читатель закроет книгу в этом скучном месте и не станет читать дальше. Между тем этот утомительный способ действительно был самым лучшим в ту эпоху, а у нас в России употреблялся до середины XVIII века: в «Арифметике» Магницкого он описан в числе шести предлагаемых там способов (из которых ни один не похож на современный) и особенно рекомендуется автором; Магницкий на протяжении своей объемистой книги – 640 страниц огромного формата – пользуется исключительно «способом галеры», хотя и не употребляет этого наименования.
В заключение покажем читателю эту числовую «галеру», воспользовавшись примером из упомянутой книги Тартальи:
Мудрый обычай старины
Добравшись после утомительных трудов до желанного конца арифметического действия, предки наши считали необходимым непременно проверить этот в поте лица добытый итог. Громоздкие приемы вызывали естественное недоверие к их результатам. На длинном, извилистом пути легче заблудиться, чем на прямой дороге современных приемов. Отсюда естественно возник старинный обычай проверять каждое выполняемое арифметическое действие – похвальное правило, следовать которому не мешало бы и нам.
Любимым приемом проверки был так называемый способ 9, – очень изящный прием, который полезно и теперь знать каждому. Он нередко описывается в современных арифметических учебниках, особенно иностранных, но почему-то теперь малоупотребителен на практике, что, впрочем, не умаляет его достоинств.
Проверка девяткой основана на «законе остатков», гласящем: остаток от деления суммы на какое-либо число равен сумме остатков от деления каждого слагаемого на то же число; точно так же, остаток произведения равен произведению остатков множителей. С другой стороны, известно также[14], что при делении числа на 9 получается тот же остаток, что и при делении на 9 суммы цифр этого числа; например, 758 при делении на 9 дает 2, и столько же получается в остатке от деления (7 + 5 + 8) на 9. Сопоставив оба свойства чисел, мы и приходим к приему проверки девяткой, т. е. делением на 9.
Пусть требуется проверить правильность сложения следующего столбца:
Составляем в уме сумму цифр каждого слагаемого, причем в получающихся числах также складываем цифры (это делается в самом процессе сложения цифр), пока, в конечном результате, не получим однозначного числа. Результаты эти (остатки от деления на 9) записываем, как показано на примере, рядом с соответствующим слагаемым. Складываем все остатки – получаем 8. Такова же должна быть сумма цифр итога (5339177), если действие выполнено верно:
5 + 3 + 3 + 9+1 + 7 + 7 после всех упрощений, равно 8 (точнее: «равноостаточно с 8»).
Проверка вычитания выполняется точно так же, если принять уменьшаемое за сумму, а вычитаемое и разность – за слагаемое. Например:
4 + 6 = 10, т. е. 1.
Не сложна и проверка умножения, как видно из следующего примера:
Если при такой проверке умножения обнаружена будет ошибочность результата, то, чтобы определить, где именно ошибка находится, можно проверить способом девятки каждое частное произведение отдельно; а если здесь ошибки не окажется, надо проверить еще и сложение частных произведений. Такая проверка сберегает время и труд, конечно, только при умножении многозначных чисел; при малых числах проще заново выполнить действие.
Проверка деления по этому способу требует маленького пояснения. Если имеем случай деления без остатка, то проверка производится, как и
Жалоба
Напишите нам, и мы в срочном порядке примем меры.