Стивен Хокинг - Моя краткая история Страница 10
- Категория: Документальные книги / Биографии и Мемуары
- Автор: Стивен Хокинг
- Год выпуска: 2014
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 21
- Добавлено: 2018-08-10 03:45:52
Стивен Хокинг - Моя краткая история краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Стивен Хокинг - Моя краткая история» бесплатно полную версию:«Моя краткая история» — автобиографическая книга Стивена Хокинга, пронзительная по своей искренности и откровенности. Человек, которому в двадцать один год был поставлен страшный медицинский диагноз, пророчащий лишь краткое пребывание в этом мире, рассказывает о своей жизни, которая являет собой постоянное преодоление, противостояние слепой судьбе, обрекшей великий ум на тяжелейшие физические страдания. И вопреки прогнозам врачей этот человек, несмотря на все коварство своего заболевания, уже более полувека не только противостоит ему, а более того — он бросает ему вызов. Принимая свою болезнь и инвалидность как неизбежность, он выказывает небывалую духовную мощь и покоряет нас силой своего интеллекта, доказывая безграничность человеческих возможностей и поднимая на пьедестал гений разума.
Стивен Хокинг - Моя краткая история читать онлайн бесплатно
Поначалу я не мог понять, в чем суть. Пенроуз показал, что стоит только умирающей звезде сжаться до определенного радиуса, неизбежно возникает сингулярность – точка, где пространству и времени приходит конец. Естественно, я подумал, что мы уже знаем о невозможности воспрепятствовать коллапсу массивной холодной звезды под действием собственной гравитации, пока она не достигнет сингулярности с бесконечной плотностью. Но в действительности уравнения были решены только для случая коллапса идеально сферической звезды, а реальные звезды, конечно же, не были в точности сферическими. Если Лифшиц и Халатников правы, отклонения от сферической симметрии будут увеличиваться по ходу коллапса звезды и приведут к тому, что разные части звезды промахнутся относительно друг друга, избежав тем самым сингулярности с бесконечной плотностью. Но Пенроуз показал, что они ошибались: небольшие отклонения от сферической симметрии не будут препятствовать появлению сингулярности.
Я понял, что подобные рассуждения можно применить и к расширению Вселенной. В этом случае я мог доказать, что существовали сингулярности, в которых берет начало пространство-время. Так что Лифшиц и Халатников опять оказались неправы. Общая теория относительности предсказывает, что Вселенная должна иметь начало, – результат, который не избежал внимания церкви.
Обе первоначальные теоремы о сингулярностях – пенроузовская и моя – требовали допустить, что Вселенная обладает горизонтом Коши, то есть поверхностью, которую траектория каждой частицы пересекает один, и только один, раз. Поэтому могло оказаться, что наши первые теоремы о сингулярности просто доказывали, что Вселенная не имеет горизонта Коши. Хотя это интересная возможность, но она была несравнима по важности с тем, что время может иметь начало или конец. Поэтому я озадачился такими доказательствами теорем о сингулярности, которые не требовали бы допущений относительно горизонтов Коши.
В течение следующих пяти лет мы с Роджером Пенроузом и Бобом Герочем разработали теорию причинностной структуры в общей теории относительности. Какое это было замечательное ощущение – получить в свое полное распоряжение целое поле для исследований!
Как не похоже это было на физику элементарных частиц, где люди буквально дрались друг с другом, чтобы застолбить свежие идеи! Там и по сей день всё по-прежнему.
Я изложил кое-что из этого в эссе, которое в 1966 году получило в Кембридже премию Адамса [13] . Оно легло в основу книги «Крупномасштабная структура пространства-времени», которую я написал совместно с Джоном Эллисом и опубликовал в Cambridge University Press в 1973 году[14] . Книга все еще переиздается, поскольку это фактически последнее слово в вопросе о причинностной структуре пространства-времени, то есть о том, какие точки пространства-времени могут влиять на события в других точках. Я хочу предостеречь широкую аудиторию от попыток обратиться к этой книге, поскольку она сугубо специальная и написана в то время, когда я пытался придерживаться того же уровня строгости, что и чистые математики. Сегодня я больше обеспокоен тем, чтобы быть правым, чем праведным.
Как бы то ни было, почти невозможно быть ригористом в квантовой физике, поскольку вся эта область покоится на очень шаткой математической почве.
7. Черные дыры
Сама мысль о некоем объекте, который мы ныне именуем черными дырами, насчитывает уже более двух столетий. В 1783 году кембриджский преподаватель Джон Мичелл опубликовал в «Философских трудах Лондонского Королевского общества» статью об объектах, которые он называл «темными звездами». Он отмечал, что достаточно массивная и компактная звезда могла бы обладать столь сильным гравитационным полем, что удерживала бы испускаемый ею свет. Любой свет, испущенный с поверхности этой звезды, будет возвращен обратно ее гравитационным полем, не сумев значительно от нее отдалиться.
Мичелл предположил, что таких звезд может быть много. Хотя их нельзя увидеть, поскольку свет от них до нас не доходит, можно почувствовать их гравитационное притяжение. Такие объекты мы называем теперь черными дырами, поскольку это отражает их сущность – черные пустоты в космосе. Похожее предположение было сделано спустя несколько лет французским ученым маркизом де Лапласом, по- видимому независимо от Мичелла. Весьма интересно, что Лаплас включил эту гипотезу лишь в первое издание своей книги «Изложение системы мира»[15] , в последующих изданиях ее уже нет. Возможно, он решил, что это безумная идея.
Как Мичелл, так и Лаплас считали, что свет состоит из частиц, подобных пушечным ядрам, которые могут замедляться гравитацией и падать обратно на звезду. Это было несовместимо с результатами проведенного в 1887 году эксперимента Майкельсона – Морли, который показал, что свет всегда распространяется с одинаковой скоростью. Совместимой теории воздействия гравитации на свет не было вплоть до 1915 года, когда Эйнштейн сформулировал общую теорию относительности. На ее основе Роберт Оппенгеймер и его студенты Джордж
Волков и Хартланд Снайдер в 1939 году показали, что звезда, исчерпавшая свое ядерное топливо, не сможет противостоять гравитации, если ее масса превышает некий предел, сравнимый по порядку величины с массой Солнца. Выгоревшие звезды с большей массой должны коллапсировать внутрь самих себя, образуя черные дыры, содержащие сингулярности с бесконечной плотностью. Эйнштейн никогда не признавал черных дыр или возможности сжатия материи до бесконечной плотности, хотя это и предсказывалось его теорией.
Начавшаяся война отвлекла Оппенгеймера для работы над атомной бомбой. После войны больший интерес вызывала атомная и ядерная физика, и более двадцати лет гравитационный коллапс и черные дыры пребывали в забвении.
Интерес к гравитационному коллапсу вновь проснулся в 1960-х годах, после открытия квазаров – очень далеких объектов, которые являются чрезвычайно компактными и мощными оптическими и радиоисточниками. Материя, падающая в черную дыру, была единственным правдоподобным механизмом, который мог объяснить выработку такого большого количества энергии в столь малой области пространства. Тогда вновь вспомнили о работе Оппенгеймера, и специалисты стали заниматься теорией черных дыр.
В 1967 году Вернер Израэль получил важный результат. Он показал, что если только остаток невращающейся коллапсирующей звезды не является в точности сферически симметричным, сингулярность, которую он содержит, будет голой, то есть она будет видна внешним наблюдателям. Это означало бы нарушение общей теории относительности в сингулярности коллапсирующей звезды и лишало бы нас возможности предсказать будущее остальной Вселенной.
(adsbygoogle = window.adsbygoogle || []).push({});Жалоба
Напишите нам, и мы в срочном порядке примем меры.