Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? Страница 11

Тут можно читать бесплатно Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?. Жанр: Документальные книги / Биографии и Мемуары, год 2015. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?

Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?» бесплатно полную версию:
В течение многих лет Вернер Гейзенберг считался одним из самых демонических представителей западной науки. И это неудивительно, ведь именно он стоял во главе нацистской ядерной программы, к счастью, безуспешной. И все же сотрудничество ученого с преступным режимом не заслонило его огромный вклад в науку. В 1925 году Гейзенберг обобщил беспорядочное на первый взгляд скопление наблюдений в сфере квантовой физики за предыдущие десятилетия, а через два года вывел свой знаменитый принцип неопределенности. Ученый заявил, что наблюдатель влияет на созерцаемую им реальность. Этот принцип и выводы, из него следующие, заставили недоумевать многих ученых, в том числе и Эйнштейна, который, протестуя, писал: «Мне хотелось бы думать, что Луна существует, даже если я на нее не смотрю».

Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? читать онлайн бесплатно

Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? - читать книгу онлайн бесплатно, автор Жозе Фаус

В этот момент в дело вмешался Зоммерфельд, который в 1916 году, в разгар Первой мировой войны, рассмотрел возможность существования более общих квантовых условий, позволяющих описать атом водорода. Бор предположил, что электроны движутся по круговым орбитам, однако в общем случае орбиты электронов в планетарной модели имеют форму эллипсов. Окружность описывается одной величиной, радиусом, эллипс – двумя, а именно длиной большей и меньшей полуосей. Следовательно, предположил Зоммерфельд, чтобы описать состояние электрона, требовались два квантовых числа. В своих рассуждениях он использовал то же главное квантовое число, п из модели Бора, которое принимало значения 1, 2, 3, … Другое квантовое число, которое он обозначил через k, принимало значения от 1 до n. В современной нотации мы используем число I = k – 1, которое принимает значения от 0 до n – 1. Зоммерфельд обнаружил, что стационарные состояния, характеризующиеся одним и тем же значением n и разными значениями l, имеют одинаковую энергию как для круговой, так и для эллиптической орбиты. Такие состояния называются вырожденными для квантового числа l.

В дополнение к этому Зоммерфельд рассмотрел релятивистские эффекты. Если скорости элементов системы составляют значимую часть скорости света (1% уже является значимой частью), законы классической физики перестают действовать. Зоммерфельд не привел строгое решение релятивистской задачи, а ограничился тем, что нашел приближенное выражение для расчета энергии. Его результат был равен выражению, полученному Бором, с поправкой, зависевшей от чисел n и l. Иными словами, релятивистские эффекты нарушали вырожденное состояние. Поправка зависела от квадрата величины а = e²/(hc), которая, в свою очередь, зависит от величины заряда электрона e, скорости света c и редуцированной постоянной Планка h («аш со штрихом»), равной постоянной Планка h, разделенной на 2π. Величина поправки называется постоянной тонкой структуры и равна примерно 1/137036. Релятивистская поправка очень мала, поэтому ее можно наблюдать лишь при использовании более точных спектроскопических методов (отсюда и название «постоянная тонкой структуры»). Таким образом, обобщение Зоммерфельда, в котором вводилось второе квантовое число, позволяло объяснить еще не известные эффекты.

Физики начали понимать всю сложность спектров, однако им по-прежнему приходилось использовать ничем не обоснованные предпосылки. Ученые не понимали, почему электрон не испускал излучение, находясь на стационарной орбите, и ограничивались объяснением событий, происходивших во время перехода с одной орбиты на другую, – квантовых скачков. Без ответа оставалось множество вопросов, например: что происходило в атомах, имевших много электронов? Все электроны или их часть могли располагаться на одной круговой орбите, на концентрических орбитах или, возможно, их орбиты пересекались. Благодаря своей интуиции Бор смог получить первое представление о периодической системе элементов. Вся эта совокупность более или менее обоснованных предположений стала называться «старой квантовой теорией», в отличие от возникшей «новой». Упомянем еще несколько задач, рассмотренных в старой квантовой теории.

С появлением новых дифракционных решеток стало возможным измерять спектры со все большей точностью. Это можно сравнить с подбором очков: когда человек с плохим зрением идет к окулисту, то вначале видит лишь расплывчатые фигуры, а затем, примеряя линзы, постепенно начинает различать очертания букв. Аналогично, с ростом точности наблюдений атомные спектры демонстрировали все более сложную структуру. На рубеже 1920-х годов ученые смогли увидеть, что некоторые линии спектров атомов щелочных металлов, в частности натрия и калия, были двойными, а линии спектров щелочноземельных металлов, к примеру магния и кальция, – даже тройными. Испанский ученый Мигель Каталан, исследовав спектры магния и хрома, показал, что существуют кратные линии спектров, состоящие из четырех, шести и даже восьми линий. Кроме того, было известно, что в электростатическом или магнитном поле линии спектра также удваивались. Таким образом, в действительности модель Бора описывала атомный спектр водорода весьма приближенно. Однако это был первый важный шаг в правильном направлении.

Модели Бора, Зоммерфельда и тонкая структура

Представим некоторые формулы, описывающие атом водорода. Энергия стационарного состояния в модели Бора определяется выражением

где n – главное квантовое число, R – постоянная Ридберга. Бор получил выражение

где m – масса электрона, е – его электрический заряд, h – редуцированная постоянная Планка.

В расширенной модели Зоммерфельда использовалось второе квантовое число, которое мы обозначили буквой l, принимающее значения от 1 до n. С помощью релятивистских поправок Зоммерфельд определил, что энергия стационарного состояния определяется как

где α – постоянная тонкой структуры. Большее значение поправки, соответствующее квантовым числам n = 1 и l = 0, равняется 1 + α²/4 и равно 1,000013…, то есть примерно одной стотысячной.

Эффект Зеемана и модель каркаса атома

Спустя несколько недель после того, как Зоммерфельд допустил Гейзенберга на свои семинары, он предложил новому студенту задачу, которую не мог решить сам. В 1895 году голландский физик Питер Зееман (1865-1943) обнаружил, что в присутствии магнитного поля некоторые спектральные линии утраиваются. Появление дополнительных линий не зависело от анализируемого вещества и определялось магнитным полем. Этот эффект можно было объяснить с помощью законов классической физики, однако ученых интересовала его интерпретация в рамках обобщенной модели атома, предложенной Зоммерфельдом. Электрон, движущийся по замкнутой орбите, эквивалентен электрическому току в катушке, который, в свою очередь, порождает магнитное поле. Это магнитное поле взаимодействует с внешним магнитным полем, при этом энергия их взаимодействия зависит от угла между ними. Зоммерфельд предположил, что этот угол также описывается квантовыми законами и может принимать только дискретные значения, определяемые неким квантовым числом. Это число Зоммерфельд назвал магнитным числом и обозначил его буквой m. Таким образом, в магнитном поле энергия стационарного состояния зависела от трех квантовых чисел: n, l, m. Далее Зоммерфельд попытался рассчитать частоты перехода на основе разности энергий и сравнить их с наблюдаемыми линиями спектра.

(adsbygoogle = window.adsbygoogle || []).push({});
Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.