Александр Прищепенко - ШЕЛЕСТ ГРАНАТЫ Страница 13
- Категория: Документальные книги / Биографии и Мемуары
- Автор: Александр Прищепенко
- Год выпуска: 2009
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 86
- Добавлено: 2018-08-09 07:28:24
Александр Прищепенко - ШЕЛЕСТ ГРАНАТЫ краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Александр Прищепенко - ШЕЛЕСТ ГРАНАТЫ» бесплатно полную версию:Эта книга об оружии, но не только – она открывает причудливую мозаику явлений физического мира: химические и ядерные взрывы, разделение изотопов и магнитная гидродинамика, кинетика ионов в плотных газах и ударные волны в твердых телах, физика нейтронов и электроника больших токов, магнитная кумуляция и электродинамика. Обо всем этом автор рассказывает, не прибегая к сложному аппарату высшей математики. Для тех, кто пожелает ознакомиться с этими явлениями подробно, им же написано рассчитанное на подготовленного читателя учебное пособие для университетов и военных академий «Взрывы и волны». В книге, которую держит в руках читатель, он найдет также исторические экскурсы, пронизанные иронией рассуждения о политике и политиках, а также – о персонажах замкнутого мира военной науки.
Прим OCR: Когда идет речь о области профессиональных интересов автора книга исключительно интересна. Тем более о создании электромагнитных боеприпасов в СССР открытой литературы просто не было. Но складывается впечатление, что почти все встретившиеся (и понаслышке известные ) автору люди наплевали ему в компот или отдавили любимую мозоль и теперь он сводит с ними счеты. Сразу вспоминается один известный персонаж Каттнера из саги о Хогбенах. И фраза в конце книги – "Персонажи книги, занимаемые ими должности, приписываемые им слова и поступки – плод художественного вымысла автора". Мда…
Александр Прищепенко - ШЕЛЕСТ ГРАНАТЫ читать онлайн бесплатно
Все наверняка слышали о броуновском, хаотическом движении молекул, а многие – о том, что, при данной температуре, скорость Движения молекулы тем выше, чем меньше ее масса. Представим, что две емкости разделены перегородкой. В одной части находится чистый растворитель, а в другой – с примесями двух различных по молекулярным весам «загрязнений». Пока в «грязной» половине Движение ограничено со всех сторон, обе компоненты равномерно перемешаны, поскольку их молекулы долго совершали хаотические броски, хотя и с разными скоростями. Если перегородку убрать, то Загрязнения» начнут переходить на «чистую половину». За достаточное время легкая компонента сделает больше «шажков» в «чистом» направлении, потому что скорость ее между столкновениями больше, за то же время она поучаствует в большем числе соударений и среди них – тех, что сообщат ей скорость в «чистую» сторону. Таким образом, «чистая» половина вначале окажется обогащенной легкой компонентой – до тех пор, пока молекулы легкой компоненты не «упрутся» в границы сосуда, бывшего ранее «чистым», а тяжелые молекулы не догонят легкие у его стенки. Если растворитель испаряется достаточно интенсивно, есть возможность соорудить нечто вроде фотофиниша: зафиксировать результат гонок молекул до того момента, когда обе компоненты достигнут границы «чистого» сосуда. Возьмите лупу и рассмотрите на ваших изгаженных штанах (хорошо, если они – белые, возможно, привезенные из Рио-де- Жанейро) результат этого драматического забега. В них произошло вот что: растворитель, благодаря капиллярным явлениям просачивался по тонким зазорам между ворсинками материи. Растворенные загрязнения вынуждены были проити довольно большие расстояния по таким узкостям и легкие компоненты при этом опередили тяжелые. Потом испарение растворителя привело к консервации распределения. Это явление называют хроматографией. Его можно наблюдать и на фильтровальной бумаге, сначала капнув растворитель с загрязнениями, а потом – капая, в центр пятна чистый растворитель (рис. 2.2). Когда растворитель высохнет, можно, по концентрическим окружностям, определяющим границы разделенных зон, разрезать фильтровальную бумагу, став обладателем «обогащенных» различными компонентами кусочков.
В процессе разделения «уранов» есть много общего с хроматографией. Сначала их природную смесь переводят в газообразное состояние, соединяя с фтором, потом – прокачивают через бесчисленные пористые перегородки, так что молекулы гексафторида более легкого изотопа постепенно отделяются от тяжелых. Потом обогащенный легким изотопом газ собирают и вновь обращают в металл. Разделение идет весьма медленно, потому что массы, а значит, и скорости изотопов различаются незначительно.
Рис. 2.1. Это-уран
Рис. 2.2. Разделение методом хроматографии на промокательной бумаге синих чернил марки «Радуга-2». Видно, что самая быстрая компонента настолько опередила другие, что между ней и компонентой с промежуточной скоростью диффузии образовался разрыв (светлая область, в которой, вероятно, присутствует в основном растворитель – вода). Совсем уж «медленная» компонента занимает область в центре хроматограммы, более темную, чем остальные
Заводы, где из природного урана извлекают легкий изотоп стоят многие миллиарды долларов и занимают площади в десятки квадратных километров. На расходы идут потому, что, хотя «ураны» неотличимы ни по внешнему виду, ни химически, их разделяет пропасть в свойствах ядерных «характеров».
Процесс деления U 238 – «платный»: чтобы он начался, прилетающий извне нейтрон должен «принести» с собой энергию – МэВ 1* или более. A U 235 «бескорыстен»: для возбуждения и последующего распада от пришедшего нейтрона ничего не требуется, вполне достаточно его энергии связи в ядре. При попадании нейтрона в способное к делению ядро, образуется неустойчивый «компаунд», но очень быстро (через 10~ 23 -10" 22 секунды) такое ядро разваливается на два осколка, неравных по массе и испускающих новые нейтроны (по 2-3 в каждом акте деления, процесс этот вероятностный), так что со временем может «размножаться» и число делящихся ядер (такая реакция называется цепной). Возможно такое только в U 35 , потому что «жадноватый» U 238 не «желает» делиться от своих собственных нейтронов, энергия которых на порядок меньше МэВа. Кинетическая энергия частиц-продуктов деления на много порядков превышает выделение энергии при любом акте химической реакции, в которой состав ядер не меняется.
Продукты деления нестабильны и еще долго «приходят в себя», испуская излучения самых различных видов, в том числе – те же нейтроны. Короткоживущими осколками нейтроны испускаются спустя 10~16 -10~14 секунды после развала компаунд-ядра и такие нейтроны называют мгновенными. Но некоторые нейтроны испускаются через вполне ощутимое человеком время после деления (до десятков секунд). Такие нейтроны называют запаздывающими и, хотя доля их по сравнению с мгновенными мала (менее процента), роль в работе ядерных установок – важнейшая.
Свободные нейтроны активно взаимодействуют с любыми ядрами, причем весьма разнообразно. Вероятность взаимодействия описывают «сечениями», измеряемыми «барнами» (барн равен см2 ), уподобляя то или иное ядро мишени соответствующей площади для летящего нейтрона. Одно и то же ядро может представлять различной площади мишень для разных сценариев взаимодействия: например отскок нейтрона от ядра может быть намного более вероятен, чем его захват ядром с испусканием гамма- кванта. Таких сценариев очень много и по совокупности информации о них можно «узнать» го или иное ядро так же точно, как по отпечаткам пальцев – человека.
Образованные делением частицы при многочисленных столкновениях с окружающими атомами «отдают» им свою энергию, повышая, таким образом, температуру окружающего вещества. После того, как в сборке с делящимся веществом появились нейтроны, мощность тепловыделения может возрастать или убывать, а может быть и постоянной. Параметры сборки, в которой число делений в единицу времени не растет, но и не уменьшается, называют критическими. Но критичность сборки может поддерживаться и при большом, и при малом числе нейтронов, находящихся в ней в данный момент времени. В зависимости оттого, больше или меньше это число, большей или меньшей может быть и мощность тепловыделения. Тепловую мощность увеличивают, либо «подкачивая» в критическую сборку дополнительные нейтроны извне, либо делая сборку сверхкритичной (тогда дополнительные нейтроны «поставляют» все более многочисленные «поколения» делящихся ядер). Например, если надо повысить число нейтронов (а значит, и тепловую мощность) в реакторе, то его выводят на такой режим, что мгновенных нейтронов для достижения критичности недостаточно, а вот с учетом запаздывающих – критическое состояние едва заметно переходят. Тогда реактор не «идет в разгон» а набирает мощность достаточно медленно – гак, что прирост ее можно в нужный момент остановить. Это делают, вводя в сборку поглотители нейтронов (например – стержни, содержащие кадмий или бор), что уменьшает плотность нейтронов в сборке, а значит – и выделяющуюся в ней тепловую мощность.
(adsbygoogle = window.adsbygoogle || []).push({});Жалоба
Напишите нам, и мы в срочном порядке примем меры.