Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре Страница 13

Тут можно читать бесплатно Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре. Жанр: Документальные книги / Биографии и Мемуары, год 2013. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре

Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре» бесплатно полную версию:
Имя питерского математика Григория Перельмана не сходит с новостных полос. Еще бы — открытие сделал, а положенный миллион все не берет. За обсуждением денег и странностей математика как-то совсем не замеченным остался вопрос: «Так что же открыл такого великого Перельман, что это вызвало такую шумиху и столь высоко было оценено мировой общественностью?» А открытие его действительно значимо: доказана гипотеза Пуанкаре (сейчас это теорема Пуанкаре-Перельмана), справиться с которой лучшие умы не могли более 100 лет. Из этой теоремы вытекает масса удивительных выводов в космологии, квантовой механике, философии и даже религии.  

Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре читать онлайн бесплатно

Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре - читать книгу онлайн бесплатно, автор Олег Арсенов

Будем чуточку более формальны. Говорят, что поверхность k-связна, если на ней можно провести k-1замкнутую кривую, которая не делит ее на две части. Сфера (поверхность апельсина) односвязная: как ни проводи на ней замкнутую кривую, кусочек вырежется; а вот поверхность бублика двусвязная — ее можно, например, разрезать поперек, превратив в цилиндр, но сохранив целостность (а вот повторно разрезать цилиндр уже не получится). Для поверхностей в трехмерном пространстве это свойство как раз и означает, что в поверхности есть k-1«дырка». В общем случае поверхность односвязная, если на ней любую замкнутую кривую можно непрерывной деформацией стянуть в точку, но поверхность бублика этим свойством не обладает (меридиан или параллель в точку не стягиваются).

Другое важное понятие — гомеоморфизм — также уже встречалось в рассуждениях о неразличимости чашки и бублика. Именно в этой неразличимости и дело: гомеоморфизм — это непрерывное преобразование, деформация, которой можно подвергнуть множество, сохранив при этом его топологические свойства (например, k-связность). Чашку легко непрерывным преобразованием превратить в бублик, а апельсин — в Солнце. При этом преобразовании сохраняются важнейшие топологические инварианты, такие как число k.Два множества, которые можно гомеоморфизмом превратить друг в друга, с топологической точки зрения считаются эквивалентными.

Гипотеза Пуанкаре состоит в том, что каждая односвязная трехмерная поверхность гомеоморфна трехмерной сфере. Обратите особое внимание на то, что «трехмерная поверхность» может размещаться в пространстве, чья размерность как минимум 4! Трехмерная сфера — это поверхность четырехмерного шара (привычная нам двухмерная сфера — поверхность трехмерного шара).

-53-

Рис. 20. Дискретный код трехмерной поверхности Терстона

Изображенные так называемые ячейки Терстона образуют своеобразную геометрическую головоломку. Если выбрать определенные коды Терстона: 6-8-7, 1-17-9 или 3-20-21, то каждый из них будет подсказывать, в какую геометрическую фигуру сложится трехмерная поверхность.

«В конце семидесятых принстонский математик Уильям Терстон, любивший иллюстрировать свои идеи с помощью ножниц и бумаги, предложил систематизировать все трехмерные многообразия. Он утверждал, что, несмотря на то что многообразия могут принимать любую форму, в действительности они тяготеют к некоторой "предпочтительной" геометрии (подобно тому, как кусок шелка, обернутый вокруг манекена, стремится принять его форму). Терстон предположил, что любое трехмерное многообразие может быть разложено на один или несколько компонентов, каждый из которых можно отнести к одному из восьми типов, включая сферический».

Сильвия Насер, Дэвид Грубер. Многообразная судьба. Легендарная проблема и битва вокруг ее решения

-54-

Доказывать гипотезу Пуанкаре начинают с произвольной римановой метрики на односвязном трехмерном многообразии Ми применяют к нему поток Риччи с хирургией. Важным шагом является доказательство того, что в результате такого процесса «выбрасывается» все. Это означает, что исходное многообразие Мможно представить как набор сферических пространственных форм, соединенных друг с другом трубками. Подсчет фундаментальной группы показывает, что Мдиффеоморфно связанной сумме набора пространственных форм. Таким образом, Мявляется связной суммой набора сфер, то есть сферой.

К теме гипотезы Пуанкаре примыкает важная для кибернетиков область математики — вычислительная топология. Вычислительные и распознавательные задачи, оказывается, есть и в этой абстрактной науке. С одной из таких задач связана предпринятая в 1974 году очень интересная попытка решения проблемы Пуанкаре в ее алгоритмической версии.

Каждая трехмерная поверхность задается некоторым (не будем вдаваться в подробности) дискретным кодом — конечным набором символов. Одна и та же поверхность имеет бесконечное число различных кодировок. Естественный вопрос: существует ли алгоритм, определяющийся по заданному кодовому слову, задает ли это слово трехмерную сферу в новой алгоритмической проблеме Пуанкаре? Именно эту задачу исследовал ряд видных российских математиков в 1974 году, предположив, что определенное свойство кода (оно было названо «волной») дает критерий «сферичности». Однако им удалось только доказать, что наличие «волны» гарантирует: перед нами сфера. Доказать же, что в любом коде, задающем сферу, имеется «волна», никак не получалось. Тогда авторы сделали весьма оригинальный по тем временам ход: провели масштабный компьютерный эксперимент. Была написана программа для машины БЭСМ-6, которая случайным образом генерировала коды, задающие трехмерную сферу, и проверяла наличие в них «волны». В эксперименте, потребовавшем весьма длительного счета, был проверен миллион таких случайных

-55-

представлений сферы — и во всех обнаружилась «волна»! Это был довольно веский аргумент в пользу корректности предложенного алгоритма. Но авторы, будучи серьезными математиками воздерживались от поспешных заявлений. И не напрасно: спустя пару лет был обнаружен контрпример…

Спустя 20 лет алгоритм распознавания 3-сферы (за экспоненциальное время) был все же построен. Однако общая проблема алгоритмического распознавания поверхностей размерности-3 открыта, она активно изучается и сегодня, в то время как для более высоких размерностей давно известна ее неразрешимость, а для размерности-2 она была решена еще раньше.

По мнению современного философа А. В. Дахина, особенно важно отметить, что теорема Пуанкаре — Перельмана содержит идею о возможности существования в глобальной Вселенной двух структур пространства.

Профессор Дахин считает, что имеет смысл обратиться к следующим закономерным вопросам: почему может существовать пространство с дыркой и почему может существовать пространство без дырки? Как существует пространство с дыркой и как существует пространство без дырки? И более глубокий вопрос: что находится внутри дырки и где это «что-то», когда дырка отсутствует?

Эти вопросы можно проиллюстрировать в терминах проблемы начала Вселенной. Резонно предложить две картины: одна из них показывает, что начало — это точечный объект (материальная частица), а другая картина будет отражать, что начало Вселенной — это не материя, а дырка (ничто или дух), где время и пространство отсутствуют.

(adsbygoogle = window.adsbygoogle || []).push({});
Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.