Я – хакер! Хроника потерянного поколения - Дмитрий Артимович Страница 13
- Категория: Документальные книги / Биографии и Мемуары
- Автор: Дмитрий Артимович
- Страниц: 63
- Добавлено: 2023-07-11 07:14:29
Я – хакер! Хроника потерянного поколения - Дмитрий Артимович краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Я – хакер! Хроника потерянного поколения - Дмитрий Артимович» бесплатно полную версию:Дмитрий Артимович — русский хакер, профессионал в области платежных систем и программирования, автор книги «Электронные платежи в интернете». Он вышел из тени, когда в 2010 году на всю страну прогремел скандал: кто-то парализовал работу «Аэрофлота», совершив DDoS-атаку на компанию, отвечавшую за проведение транзакций внутри. На то, чтобы реанимировать ситуацию, у специалистов ушло больше недели. Так о Дмитрии Артимовиче узнал весь мир. Сразу активизировались российские и зарубежные журналисты. Все вновь заговорили о страшных и бескомпромиссных русских хакерах: действительно ли они способны влиять на все, начиная от мировых банков и заканчивая выборами президента США? Кто же они на самом деле, правдивы ли слухи о них, связаны ли хакеры с государством и как вообще становятся взломщикам? В своей книге «Я — хакер! Хроника потерянного поколения» Д. Артимович подробно и обескураживающе отвечает на эти вопросы.
Я – хакер! Хроника потерянного поколения - Дмитрий Артимович читать онлайн бесплатно
Я опять был виноват? Да и насрать. Китайцы так меня испугались, видимо, я и вправду производил грозное впечатление. * * *
Как я узнал позже, вместе со мной в «Адаманте» работало несколько студентов, но более старших курсов и магистратуры. Один из них, Артём, мой будущий начальник, был с моего факультета того же СПбГУ. Правильно, кому еще реализовывать компьютерную физику?
«Адамант» при мне выпустил две завершенные игры — Liquidator 2 и Exodus from Earth. К первой я практически не имел отношения, может быть, за исключением пары баг-фиксов. Но моя фамилия вписана в число разработчиков обеих игр.
Liquidator 2 Welcome to Hell, разработчик Parallax Arts Studio, издатель Russobit-M, 2005
Exodus from the Earth,разработчик Parallax Arts Studio, издатель Strategy First, Inc., 2008
Итак, «Адамант» делился на два больших подразделения: разработки и дизайна. В подразделении дизайна работали аниматоры, художники по текстурам, художники по моделям и даже один композитор. Я же относился к подразделению разработки, которое, в свою очередь, делилось на отдел искусственного интеллекта, состоящий из одного человека, отдел физики, отдел графики и отдел редакторов.
Изначально я попал в отдел искуственного интеллекта. Это отдел, который заставляет компьютерных персонажей бегать, стрелять, думать. Начальником у меня стал Рома. Рома — прикольный человек, полностью погруженный в процесс программирования. Он, недолго думая, мог реализовать практически любой алгоритм. Правда, читабельность, а иногда и эффективность, от этого страдали. До «Адаманта» он успел поработать во многих местах, и даже побыть сантехником. «Сидишь так зимой на горячей трубе в раскопанной трассе, и куришь сигаретку…» — мечтательно рассказывал Рома.
Через две недели ко мне подошел Андрей, руководитель отдела физики, и сказал, что забирает меня к себе. Новость меня шокировала. Во мне заговорила неуверенность, что я справлюсь. Опять будут эти сложные производные и интегралы.
— Дима, а что не так? — спросил Андрей.
— Я только из университета ушел, потому что мне надоела эта физика, а тут опять…
— Рома — слабый руководитель, лучше тебе поработать здесь.
И Андрей оказался прав. За два года работы в «Адаманте» я сильно поднял свой уровень программирования. Например, я научился писать эффективный код, пользоваться профайлером. В компании было правило, что в самых нагруженных местах игра должна давать не менее 30 FPS (Frames Per Second — количество кадров в секунду). Точнее, этого требовал издатель. В игровой движок был встроен внутренний профайлер, показывающий количество миллисекунд на выполнение определенных блоков кода: AI (Artificial Intelligence — искусственный интеллект), Render (отрисовка графики), Physics (физика) и менее важные. Каждый блок можно было развернуть и посмотреть, на каком конкретно коде CPU «сидит» слишком долго. После чего начиналась оптимизация.
Кроме меня в отделе физики был Артём. Интересная закономерность: и Артём и Андрей оканчивали мой физфак СПбГУ. Именно они реализовали игровой физический движок.
Цель любого физического движка — рассчитать взаимодействие объектов, с учетом приложенных сил вычислить скорости и соответственно сдвинуть объекты на время кадра. Во время одного кадра скорость принимается постоянной. Для этого сначала нужно найти точки контакта объектов (их называют Joint’ы), составить большую матрицу с кучей цифр и решить уравнение с этой матрицей. Вот эта часть для меня и была пугающая. Мне очень сильно не хотелось разбираться в подобном. Но ядро функционировало без ошибок. И создание нового объекта в физическом мире, например той же пружины, сводилось просто к описанию параметров Joint’а, а все остальное безошибочно считал уже написанный код.
Существует два подхода к расчету игровой физики: коллизионный и выталкивающий. Коллизионный предполагает рассчитывать точки контакта одного объекта с другим. Если время до контакта меньше времени кадра, то кадр дробится, объекты расталкиваются, и пересчет повторяется снова. Такая физика обладает реалистичной точностью. Но минусов у нее также много: кадр иногда может дробиться на слишком много частей, что приводит к снижению производительности, и даже к откровенным тормозам. Выглядит это так, будто все замирает и начинает подергиваться. Так же, из-за ограниченной точности вычислений, возникают ситуации застревания объектов.
Большинство современных игр работает на выталкивающем принципе. Суть метода в том, что сначала объекты сдвигаются без учета коллизий, а только потом рассчитываются силы, расталкивающие объекты. Представьте, ящик падает на плоскость. Алгоритм будет работать так — на определенном кадре ящик войдет в плоскость. Будут рассчитаны точки приложения выталкивающих сил, направление и величина этих сил. На следующем кадре ящик отскочит от плоскости. Минусы такой физики в том, что при слишком быстрой скорости или малых размерах один объект может проскочить насквозь через другой. В современных физических движках для быстродвижущихся предметов используется смешанный подход, то есть кадр все-таки дробится, чтобы не было проскакиваний насквозь. Большинство сложных объектов в таком мире заменяются боксами, сферами, другими словами — примитивами, при этом страдает реалистичность. Но если бы я об этом не написал, заметили ли бы вы это в Half-Life 2? Думаю, что нет.
Наша физика в «Адаманте» была коллизионной. Захотелось так сделать Андрею с Артёмом. И это решение было ошибочно, что признали потом они сами. Слишком дорого стоил такой подход. Во-первых, вместо примитивов у нас очень любили использовать сложные трехмерные объекты, импортированные из 3D Studio Max. Во-вторых, наша физика начинала очень плохо работать, когда на сцене взаимодействовало несколько динамических объектов. Например, взрыв гранаты рядом с несколькими ящиками мог привести к жутким тормозам (множественные отскоки осколков в течение одного кадра), залипание объектов.
Перечитав кучу зарубежной литературы на английском языке, я нашел описание алгоритмов построения Joint (связей, возникающих при выталкивании объектов друг из друга) для плоскости и бокса, бокса и бокса. Joint предполагалось отдать нашему физическому ядру. Две недели вечернего времени после работы, десятки изрисованных листов А4 в расчете математических формул. И выталкивание заработало для примитивов: плоскость и бокс, бокс и бокс.
Это решение дало возможность делать особые эффекты, такие как разбивание машиной стены ящиков (ящики красиво разлетались вокруг). Отдел дизайна по достоинству оценил мой энтузиазм.
В конце первого года моей работы, а проработал я в «Адаманте» два года, вся компания собралась на
Жалоба
Напишите нам, и мы в срочном порядке примем меры.