Александр Шаров - Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла Страница 22
- Категория: Документальные книги / Биографии и Мемуары
- Автор: Александр Шаров
- Год выпуска: 1989
- ISBN: 5-02-014076-7
- Издательство: Наука
- Страниц: 66
- Добавлено: 2018-08-12 03:23:32
Александр Шаров - Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Александр Шаров - Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла» бесплатно полную версию:Описание жизни и деятельности великого ученого нашего столетия Эдвина-Пауэла Хаббла (1889—1953), автора замечательных открытий, определивших лицо современной астрономии. Его исследования утвердили концепцию островной Вселенной, состоящей из звездных систем-галактик, подобных Галактике, в которой мы живем. Главным достижением Хаббла явилось открытие закона красного смещения линий в спектрах далеких галактик, свидетельствующего о расширении Вселенной. Рассказывается также об исследованиях, продолживших дело Хаббла: о теории горячей Вселенной, о физике процессов в расширяющейся Вселенной, открытии реликтового излучения, о замыслах новых наблюдений для уточнения картины строения и эволюции Вселенной.
При написании биографии ученого использовался ряд материалов, никогда ранее не публиковавшихся.
Александр Шаров - Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла читать онлайн бесплатно
В США уже вышло три работы с анализом скоростей туманностей, а тот, кто тратил на получение материала бессонные утомительные ночи, все еще молчал. И только 13 апреля 1917 г. на заседании Американского философского общества Слайфер выступил с докладом «Туманности». Философское общество объединяет ученых разных специальностей и два других доклада на этом заседании никакого отношения к астрономии не имели. Сообщение Слайфера во многом было популярным обзором как общих данных о туманностях, так и работ, выполненных им самим. Он рассказывал о трудностях наблюдений туманностей, упомянул о том, что туманности вращаются. Слайфер продолжал верить, что туманности летят в пространстве вперед своим краем. (Любопытно, что и пять лет спустя об этом же писал Вирц и только в 1925 г. Лундмарк закрыл вопрос, не обнаружив корреляции между лучевой скоростью туманностей и их сжатием.)
Но ценность доклада была в другом. Упорно продолжая работать, Слайфер к 1917 г. довел число туманностей с измеренной лучевой скоростью до 25. «Средняя скорость .с учетом знака положительна, она указывает, что туманности удаляются со скоростью около 500 км/с. Это может означать, что спиральные туманности разлетаются,— говорил Слайфер и тут же с осторожностью добавлял,— но их распределение на небе не согласуется с этим, поскольку они имеют склонность к образованию скоплений». Этот аргумент, не играющий здесь на самом деле никакой роли, вероятно, казался ему очень существенным.
Можно было бы ожидать, что теперь хозяин возросшего материала сам подробно изучит движение Солнца. Но этого не произошло. Слайфер по-прежнему говорил о подобных исследованиях как деле будущего и лишь предварительно указал, что движение Солнца со скоростью в 700 км/с направлено к созвездию Козерога.
Звезды, окружающие Солнце, такого движения не показывали. В этом различии Слайфер видел подтверждение идеи о том, что туманности представляют собой отдельные острова Вселенной. О работах Трумена, Юнга и Харпера он почему-то совсем не вспомнил.
Заканчивая свой доклад, Слайфер твердо заявил, что изученные им туманности — это явно не те объекты, из которых могли формироваться солнечные системы, подобные нашей.
На полях Европы, Ближнего Востока и Закавказья бушевала первая мировая война. Обычно тесные связи между странами порвались и ученые Старого и Нового Света плохо знали, что делается в науке по обе стороны Атлантики. А между тем в Германии и в Нидерландах как раз в это время удалось получить важнейшие результаты, имеющие прямое отношение к удивительным лучевым скоростям туманностей, измеренных Слайфером. Альберт Эйнштейн в Берлине сформулировал свое космологическое уравнение и в предположении стационарности Вселенной нашел его решение. В этом решении гипотетические силы гравитационного отталкивания вакуума, введенные им, уравновешивались тяготением вещества, заполняющего Вселенную. Год спустя, в остававшихся нейтральными Нидерландах профессор Лейденского университета Биллем де Ситтер рассмотрел астрономические следствия теории относительности. Он нашел, что решение Эйнштейна не единственное. Если предположить, что во Вселенной средняя плотность вещества очень мала, то эйнштейновские силы отталкивания будут преобладать над тяготением вещества и вызовут его расширение, разлёт. Космические силы отталкивания пропорциональны расстоянию, поэтому и скорости взаимного удаления частиц вещества (под частицами можно понимать и отдельные галактики) будут пропорциональны расстоянию.
В 1916 и 1917 гг. три статьи об эйнштейновской теории гравитации и ее астрономических приложениях, написанные де Ситтером по предложению Эддингтона, были переправлены в Англию и опубликованы в ежемесячном журнале Королевского астрономического общества. Из-за войны список лучевых скоростей туманностей Слайфера до де Ситтера не дошел и он знал только об измерении скоростей туманности Андромеды и еще двух туманностей. Ему оставалось лишь отметить, что в отличие от туманности Андромеды у других объектов скорости положительны. Но де Ситтер полагал, что «спиральные туманности вероятнее всего находятся среди самых далеких объектов, которые мы знали». Он с уверенностью предсказывал, что «у очень удаленных объектов мы должны ожидать высокие или особенно высокие лучевые скорости».
Началась европейская часть истории изучения движений туманностей.
В конце 1917 г. сотрудник Страсбургской обсерватории Карл Вильгельм Вирц, ничего не зная о работе Паддока, также ввел в кинематические уравнения К-член... Вообще работа Паддока прошла на удивление незаметно. Даже Хаббл, подробно описывая в книге «Мир туманностей» труды своих предшественников, Паддока не вспомнил и считал, что введение K-члена — это заслуга Вирца.
Вирц заключил, «что система спиральных туманностей по отношению к нынешнему положению Солнечной системы, как центра, движется прочь со скоростью примерно 656 км/с».
Через четыре года, располагая уже 29 лучевыми скоростями, вдвое больше прежнего, Вирц повторил свое исследование, в сущности получив тот же результат. Кажется, в этой работе он впервые кратко назвал K-член — красным смещением.
А в промежутке между двумя работами Вирца такой же расчет с K-членом сделал и Лундмарк. Тогда еще природу туманностей в сущности не знали и вместе со спиралями и Магеллановыми Облаками Лундмарк использовал также и планетарные туманности. Но спиралей было большинство и из всех вариантов его решений также неизменно следовал общий вывод: K-член очень велик и имеет положительный знак.
Пока Паддок, Вирц и Лундмарк определяли K-член, Слайфер в одиночестве продолжал измерять все новые лучевые скорости. Число туманностей с известными лучевыми скоростями неуклонно росло и в 1925 г. их насчитывалось уже 45. Но анализом полученных данных Слайфер по-прежнему не занимался.
Вероятно, войной и нарушением связей следует объяснить, почему ни Вирц, ни Лундмарк о теории де Ситтера в своих статьях тогда не упоминали.
В годы войны де Ситтер не только разработал приложение эйнштейновской теории к астрономии, но сделал и другое важнейшее дело, в конечном итоге подтолкнувшее изучение красного смещения.
В Нидерландах он мог получать литературу из Германии и делиться научными новостями со своими английскими коллегами, став посредником между учеными двух воюющих держав. Именно он в 1916 г. посылает Эддингтону статью Эйнштейна, знакомит его с общей теорией относительности и привлекает внимание к одyому из следствий теории, которое можно было бы проверить. Глава английской астрономии сразу же понял значение работы Эйнштейна и вместе с Дайсоном, тогдашним королевским астрономом, энергично берется за подготовку, несмотря на продолжающуюся войну, экспедиции для наблюдения полного солнечного затмения 29 мая 1919 г. Фотографируя звезды вокруг полностью затмившегося Диска Солнца, можно убедиться, отклоняется ли луч света, проходя около гравитирующего тела, как это предсказывала теория Эйнштейна.
(adsbygoogle = window.adsbygoogle || []).push({});Жалоба
Напишите нам, и мы в срочном порядке примем меры.