Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре Страница 3

Тут можно читать бесплатно Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре. Жанр: Документальные книги / Биографии и Мемуары, год 2013. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре

Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре» бесплатно полную версию:
Имя питерского математика Григория Перельмана не сходит с новостных полос. Еще бы — открытие сделал, а положенный миллион все не берет. За обсуждением денег и странностей математика как-то совсем не замеченным остался вопрос: «Так что же открыл такого великого Перельман, что это вызвало такую шумиху и столь высоко было оценено мировой общественностью?» А открытие его действительно значимо: доказана гипотеза Пуанкаре (сейчас это теорема Пуанкаре-Перельмана), справиться с которой лучшие умы не могли более 100 лет. Из этой теоремы вытекает масса удивительных выводов в космологии, квантовой механике, философии и даже религии.  

Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре читать онлайн бесплатно

Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре - читать книгу онлайн бесплатно, автор Олег Арсенов

Разумеется, существуют и совершенно иные объяснения непостижимой эффективности действия математического

-12-

аппарата. Чаще всего при этом упоминают великого немецкого философа Канта, который утверждал, что мы не знаем и не можем знать природу. Человек, согласно Канту, настолько ограничен чувственными восприятиями, что его разум изначально наделен некими врожденными структурами, диктующими всем нам интуитивные суждения о пространстве и времени. Именно поэтому наш разум требует, чтобы окружающее пространство воспринималось в полном соответствии с законами евклидовой геометрии. Тут следует заметить, что немецкий мыслитель ничего не знал о неевклидовой геометрии, существование которой в реальном мире во многом опровергает его философские суждения. Иначе говоря, все окружающие нас явления мы видим сквозь призму врожденных математических представлений, поскольку «всеобщие и необходимые законы опыта принадлежат не самой природе, а только разуму, который вкладывает их в природу»(И. Кант. Критика чистого разума). Хотя многие выдающиеся мыслители первой половины прошлого века, например Эйнштейн и "Дрнольд Зоммерфельд, с усмешкой критиковали идею предписывания Природе ее законов как вопиющий пример человеческого высокомерия, идеи Канта получили дальнейшее развитие. Так, видный астроном и физик Артур Эддингтон считал, что мир человеческого опыта есть, по существу, творение нашего разума и что если бы мы только могли понять, как действует человеческое сознание, то нам неминуемо удалось бы вывести все естествознание, может быть лишь за исключением нескольких фундаментальных констант, зависящих от конкретной части пространственно-временного континуума, чисто теоретическими методами.

Между тем профессор Клайн так комментирует сложившуюся ситуацию: «Наделенные немногими и весьма ограниченными по своим возможностям органами чувств и головным мозгом, люди начали проникать в окружающий их загадочный мир. Используя собственный чувственный опыт и данные, полученные из экспериментов, люди выработали некий набор аксиом, применив к ним мощь своего разума. Целью их поисков было выявление порядка, лежащего в основе Мироздания.

-13-

Они стремились построить системы знания, которые противостояли бы мимолетности ощущений и могли бы служить основой для создания неких схем, способных объяснить окружающий Мир и помочь овладеть им. И главным продуктом человеческого разума стала математика. Она отнюдь не безупречно ограненный и идеально отшлифованный драгоценный камень, и даже непрерывная "доводка" не в состоянии устранить всех ее изъянов. И все же именно математика воплощает в себе звено, наиболее эффективно связывающее реальный Мир с миром чувственных восприятий, и остается поныне драгоценнейшим сокровищем человеческого разума, которое надлежит всячески оберегать. На протяжении долгого времени математика находилась в авангарде человеческой мысли и, несомненно, сохранит передовые позиции, даже если более тщательные исследования выявят в ней какие-нибудь новые изъяны.

Математическая мысль без устали бьется о скалистый берег, препятствующий ее проникновению на новые территории. Но даже гранитные утесы не выдерживают ее могучего натиска, не ослабевающего на протяжении столетий, и рушатся, открывая перед математикой новые просторы».

Рис. 5. Артур Стенли Эддингтон (1882–1944)

«…Там, где наука ушла особенно далеко в своем развитии, разум лишь получил от природы то, что им было заложено в при-

-14-

роду. На берегах неизвестного мы обнаружили странный отпечаток. Чтобы объяснить его происхождение, мы выдвигали одну за другой остроумнейшие теории. Наконец нам все же удалось восстановить происхождение отпечатка. Увы! Оказалось, что это наш собственный след…»

А. С. Эддингтон. Философия физики

Итак, окрыленные мнением выдающихся научных авторитетов о магической силе науки, давайте будем собирать нашу математическую головоломку, начиная с первого набора пазлов — тайн одного из последних ученых-универсалов…

-15-

Часть 1 Тайна Пуанкаре

-16-

«Трудно отделаться от ощущения, что эти математические формулы существуют независимо от нас и обладают своим собственным разумом, что они умнее нас, умнее тех, кто открыл их, и что мы извлекаем из них больше, чем было в них первоначально заложено…»

Генрих Герц

«Эти понятия анализа существуют самостоятельно вне нас, образуя единое целое, лишь часть которого беспрепятственно, хотя и несколько загадочно, открывается нам; это целое ассоциируется с другой совокупностью объектов, которые мы воспринимаем органами чувств».

Шарль Эрмит

«Мы не должны выносить то или иное математическое утверждение за рамки математической языковой практики и в свою очередь рассматриваем последнюю как неотъемлемую часть нашего общего языка. Математика как его функциональная часть служит для того, чтобы многое сообщать об объектах окружающего мира. Именно здесь лежит ключ к ответу на вопрос о конвенционализме. Принимаемые нами соглашения должны как-то "работать", то есть помогать нам каким-то образом следовать природе, "подражать" ей. Можно было бы, например, принять решение изменить наши математические соглашения, исключив, скажем, понятие иррационального числа. Но оно необходимо в наших взаимоотношениях с природой, а именно природа в конечном счете служит мерилом нужности принимаемых нами соглашений, как математических, так и всех прочих».

Уильям Барретт. Иллюзия техники

-17-

Рис. 6. Жюль Анри Пуанкаре (1854–1912)

«Можно ли утверждать, что некоторые явления, возможные в евклидовом пространстве, были невозможны в неевклидовом, так как опыт, констатируя эти явления, прямо противоречил бы гипотезе о неевклидовом пространстве?

По моему мнению, подобный вопрос не может возникнуть…»

А. Пуанкаре. Принципы естествознания

От личности выдающегося французского ученого конца XIX — начала XX века Анри Пуанкаре так и веет таинственностью. Раньше все разговоры среди историков науки так или иначе вращались вокруг его неоднозначного вклада в создание теории относительности. Дело в том, что хотя отцом специальной теории относительности, не говоря уже об общей теории относительности, почти во всех учебниках называется исключительно Альберт Эйнштейн, у него был целый ряд предшественников. Это прежде всего Гендрик Антон Лоренц (1853–1928), Джордж Френсис Фицджеральд (1851–1901) и Джозеф Лармор (1857–1942). Однако возглавляет этот ряд разработчиков физического релятивизма, безусловно, сам Пуанкаре.

(adsbygoogle = window.adsbygoogle || []).push({});
Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.