Эндрю Ходжес - Вселенная Алана Тьюринга Страница 30
- Категория: Документальные книги / Биографии и Мемуары
- Автор: Эндрю Ходжес
- Год выпуска: 2015
- ISBN: 978-5-17-092005-1
- Издательство: АСТ
- Страниц: 80
- Добавлено: 2018-08-09 14:54:13
Эндрю Ходжес - Вселенная Алана Тьюринга краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Эндрю Ходжес - Вселенная Алана Тьюринга» бесплатно полную версию:За свою короткую жизнь английский математик, логик, криптограф Алан Тьюринг (1912–1954) успел прославиться тем, что был везде первым. Он первым начал разрабатывать основы информатики, современного программирования. Первым стал создавать искусственный интеллект. Первым использовал термин «компьютер» в современном понимании. Стал первым в мире хакером, взломщиком кодов. Благодаря его таланту британские войска одержали победу над германским флотом во время Второй мировой войны: Тьюринг вскрыл секретные коды самого неприступного шифровального устройства нацистов «Энигма».
Эндрю Ходжес - Вселенная Алана Тьюринга читать онлайн бесплатно
Более того, Алан пришел к другому важному удивительному выводу: в такой «машине» между «числами» и производимыми с ними операциями не было никакого существенного различия. С точки зрения современной математики, все они представляли собой лишь символы.
Из этого следовало, что одна машина могла воспроизводить действия, выполняемые любой другой машиной. Такое устройство Алан и назвал универсальной машиной. Она должна была считывать дескриптивные числа, зашифровывать их в таблицы, а затем производить действия этих таблиц. Универсальная машина могла выполнять любые действия, которые производила любая другая таблица… Такая машина могла выполнять любые действия, и этого было достаточно, чтобы на время крепко задуматься. Более того, такая машина имела совершенно определенный вид, и Алан разработал соответствующую таблицу для универсальной машины.
И самое главное – Алану удалось доказать, что математика никогда не будет исчерпана никаким конечным множеством операций.
Дальше он выразил наиболее важную идею для своего исследования: «Действия компьютера в любой момент времени строго определены символами, которые он считывает также, как и его «состояние» в текущий момент. Мы можем предположить, что существует некоторый предел B для числа символов или ячеек, которые компьютер может считывать за одну единицу времени. Чтобы считать следующие символы, ему придется сделать шаг к следующей ячейке. Также предположим, что число подобных состояний, которые должны быть приняты во внимание, также конечно. Причины тому по своей природе схожи с теми, что возникают при ограничении количества символов. Если мы допустим бесконечное число состояний, некоторые из них будут «в некоторой степени похожими» и вследствие этого могут быть перепутаны. Следует еще раз подчеркнуть, что подобное ограничение не оказывает серьезного влияния на производимое вычисление, поскольку использования более сложных состояний можно попросту избежать, записав больше символов на рабочую ленту».
Слово «компьютер» здесь использовалось в своем значении, относящемся к 1936 году: лицо, выполняющее вычисления. В другом месте своей работы он обратился к идее, что «человеческая память неизбежно является ограниченным ресурсом», но эту мысль он выразил в ходе своего размышления о природе человеческого разума. Его предположение, на котором основывались его доводы о том, что состояния были исчислимы, было довольно смелым предположением. Особенно примечательно это было тем, что в квантовой механике физические состояния могли быть «в некоторой степени похожими». Далее он продолжил рассуждать о природе вычислений: «Представим, что производимые компьютером операции разложены на «простые операции», настолько элементарные, что невозможно представить дальнейшего их разложения на еще более простые операции. Каждая такая операция несет в себе некоторое изменение в физической системе, которую представляют собой компьютер и его лента. Нам известно состояние системы при условии, что мы знаем последовательность символов на рабочей ленте, которую считывает компьютер (возможно, в особом установленном порядке), а также состояние компьютера. Мы можем предположить, что в ходе простой операции не может быть изменено больше одного символа. Любые другие изменения могут быть разложены на более простые изменения подобного вида. Ситуация относительно ячеек с изменяемыми таким образом символами точно такая же, как и в случае со считанными ячейками. Таким образом, мы можем без ограничения общности предположить, что ячейки с измененными символами равнозначны считанным ячейкам.
Помимо подобных изменений символов простые операции должны включать в себя изменения распределения считанных ячеек. Новые считываемые ячейки должны в тот же момент распознаваться компьютером. Думаю, что разумно будет предположить, что такими могут быть лишь те ячейки, расстояние которых от наиболее близко расположенной к только что мгновенно считанной ячейке не превышает определенное установленное число ячеек. Также предположим, что каждая из новых считанных ячеек находится в пределах L – ячеек последней считанной ячейки.
В связи с «немедленным распознаванием», можно полагать, что существуют другие виды ячеек, которые так же немедленно распознаются компьютером. В частности, отмеченные специальными символами ячейки могут считаться немедленно распознаваемыми компьютером. Теперь, если такие ячейки отмечены одинарными символами, их может быть только конечно количество, и мы не должны разрушать нашу теорию, добавляя отмеченные ячейки к тем, что были считаны. С другой стороны, если они отмечены последовательностью символов, мы не можем рассматривать процесс распознавания в качестве простой операции…»
«Теперь мы можем сконструировать машину, – писал далее Алан, – чтобы выполнить работу этого компьютера». Смысл его рассуждений был очевиден: каждое состояние вычислителя представлялось в виде конфигурации соответствующей машины.
Так, Алан смог разрешить один из ключевых вопросов в математике, с шумом ворвавшись в научный мир будучи еще никому неизвестным молодым ученым. Его решение проблемы касалось не только абстрактной математики или некоторой игры символов, оно также включало в себя рассуждения о природе отношений человека и физического мира. Это нельзя было назвать наукой с точки зрения проводимых наблюдений и предсказаний. Все, что он сделал, – создал новую модель, новую основу. Его методы были сродни той игре воображения, которую использовали Эйнштейн и фон Нейман, ставя под сомнение существующие аксиомы вместо того, чтобы оценивать результаты. Его модель даже не была по-настоящему новой, поскольку раньше уже существовали многие подобные идеи, даже на страницах детской книги «Чудеса природы», представляющие мозг в виде машины, телефонного узла или офисной системы. Ему оставалось лишь объединить такое простое механистичное представление человеческого разума с ясной логикой чистой математики. Его машины – которые в дальнейшем будут называться машинами Тьюринга – стали той самой связью между абстрактными символами и физическим миром. А его образное мышление оказалось, в особенности для Кембриджского университета, пугающим своим индустриальным настроем.
В машине Тьюринга Алану удалось создать свой случай детерминизма в виде автоматической машины, производящей операции в рамках логической системы мышления, которую он считал подходящей для изучения человеческого разума.
(adsbygoogle = window.adsbygoogle || []).push({});Жалоба
Напишите нам, и мы в срочном порядке примем меры.