Взломавшая код. Дженнифер Даудна, редактирование генома и будущее человечества - Уолтер Айзексон Страница 37
- Категория: Документальные книги / Биографии и Мемуары
- Автор: Уолтер Айзексон
- Страниц: 139
- Добавлено: 2023-05-12 16:11:12
Взломавшая код. Дженнифер Даудна, редактирование генома и будущее человечества - Уолтер Айзексон краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Взломавшая код. Дженнифер Даудна, редактирование генома и будущее человечества - Уолтер Айзексон» бесплатно полную версию:Уолтер Айзексон, автор ставших бестселлерами биографий Стива Джобса, Альберта Эйнштейна, Леонардо да Винчи и многих других, рассказывает, как Дженнифер Даудна и другие ученые начали революционный процесс, который позволит нам еще эффективнее бороться с болезнями, побеждать вирусы и растить более здоровое потомство. Инструмент для редактирования генома, разработанный Даудной и ее коллегами, CRISPR, уже применяется при лечении серповидноклеточной анемии, рака и слепоты. В 2020 году Даудна со своими командами начала изучать, как CRISPR могут выявлять и уничтожать коронавирус. В том же году Даудна и ее соавтор Эммануэль Шарпантье получили Нобелевскую премию по химии.
В формате PDF A4 сохранен издательский макет книги.
Взломавшая код. Дженнифер Даудна, редактирование генома и будущее человечества - Уолтер Айзексон читать онлайн бесплатно
Йинек и Хылинский постарались сделать презентацию занятной. Они подготовили слайды, чтобы по очереди объяснять, какие эксперименты провели, и дважды отрепетировали доклад перед выступлением. Аудитория собралась небольшая, и конференция проходила в неформальной и дружественной атмосфере. Тем не менее оба докладчика заметно волновались, и особенно беспокоился Йинек. “Мартин сильно нервничал, и я за него переживала”, – говорит Даудна.
Но причин для беспокойства не было. Презентация стала триумфом. Сильвен Муано, пионер CRISPR из Университета Лаваля в Квебеке, поднялся и сказал: “Вот это да!” Другие принялись строчить письма и сообщения коллегам, оставшимся в лабораториях.
Позже Баррангу, исследователь из Danisco и соавтор Шикшниса, сказал, что, выслушав доклад, он понял, что Даудна и Шарпантье вывели науку на новый уровень. “Статья Дженнифер явно была гораздо лучше нашей, – признает он. – Их нечего было и сравнивать. Она стала поворотным моментом и превратила CRISPR из специфической особенности микробного мира в технологию. Именно поэтому мы с Виргиниюсом не обиделись”.
Кшиштоф Хылинский
Мартин Йинек
Особенно показательной стала реакция Эрика Сонтхаймера, который пришел в восторг и одновременно почувствовал укол зависти. Он одним из первых спрогнозировал, что CRISPR станет инструментом для редактирования генома. Когда Йинек и Хылинский завершили презентацию, он поднял руку и задал вопрос: как применять технологию одиночной направляющей РНК для редактирования генома в эукариотических клетках, то есть в клетках, имеющих ядра? В частности, будет ли технология работать в клетках человека? Докладчики предположили, что технологию можно адаптировать, подобно тому как ранее были адаптированы многие другие молекулярные технологии. После обсуждения Сонтхаймер, скромный ученый старой школы, повернулся к Даудне, которая сидела на два ряда дальше него, и одними губами сказал: “Надо поговорить”. Когда объявили очередной перерыв, они вышли из аудитории и встретились в коридоре.
“Я понимал, что мы собираемся работать над одними и теми же вещами, но свободно говорил с ней, поскольку не сомневался, что могу ей доверять, – вспоминает Сонтхаймер. – Я сказал, что налаживаю работу CRISPR в дрожжах. Она ответила, что хочет продолжить беседу, потому что система CRISPR будет быстро адаптирована для эукариотических клеток”.
Тем вечером Даудна пешком пришла в центр Беркли, где за ужином в японском ресторане встретилась с тремя исследователями, которые ранее были и впоследствии остались ее коллегами и конкурентами: Эриком Сонтхаймером и двумя учеными, статья которых только что померкла в блеске ее собственной работы, Родольфом Баррангу и Виргиниюсом Шикшнисом. По словам Баррангу, они не расстроились, что проиграли в гонке, поскольку признали победу Даудны честной. Пока они спускались по улице к ресторану, он даже спросил у Даудны, не стоит ли им с Шикшнисом отозвать статью, ожидающую публикации. Даудна улыбнулась. “Нет, Родольф, с вашей статьей все в порядке, – сказала она. – Не нужно ее отзывать. Ею вы вносите собственный вклад в науку, а ведь именно к этому все мы и стремимся”.
За ужином ученые рассуждали, в каком направлении их лаборатории могут двинуться дальше. “Атмосфера была очень теплой, хотя и казалось, что неловкости не избежать, – говорит Сонтхаймер. – Просто чудесный ужин в чудесное время, когда все мы только начинали понимать, какую важность это обретет”.
Статья Даудны и Шарпантье, опубликованная онлайн 28 июня 2012 года, дала стимул к развитию совершенно новой области биотехнологий – разработке инструмента для редактирования генома человека на базе CRISPR. “Мы все понимали, что вступаем в большую игру, где каждый будет стремиться как можно скорее [воссоздать процесс] в клетках человека, – отмечает Сонтхаймер. – Время для этой идеи настало, и нам предстоял забег к цели”.
Часть третья. Редактирование генома
Какое множество прекрасных лиц!
Как род людской красив! И как хорош
Тот новый мир, где есть такие люди![155]
Уильям Шекспир. Буря
Глава 20. Инструмент для человека
Генная терапия
Путь к синтезу генов человека начался в 1972 году, когда профессор Стэнфорда Пол Берг нашел способ отделить фрагмент ДНК вируса, который встречается у обезьян, и сшить его с ДНК совершенно другого вируса. Вуаля! Получился продукт, который он назвал “рекомбинантной ДНК”. Герберт Бойер и Стэнли Коэн научились более эффективно создавать такие искусственные гены и затем клонировать их миллионами. Так зародились генная инженерия и биотехнологический бизнес.
Ученым понадобилось еще пятнадцать лет, чтобы поместить синтезированную ДНК в клетки человека. Цель состояла в том, чтобы создать своего рода лекарство. Никто не пытался менять ДНК пациента, поэтому речь не шла о редактировании генома. При генной терапии в клетки пациента помещаются фрагменты ДНК, искусственно синтезированные для нейтрализации дефектного гена, вызывающего болезнь.
Первое клиническое испытание прошло в 1990 году. Пациентом стала четырехлетняя девочка с генетической мутацией, которая ослабила ее иммунную систему, в результате чего организм стал подвержен инфекциям. Врачи нашли способ поместить рабочие копии недостающего гена в Т-клетки ее крови. Т-клетки изъяли из организма девочки, снабдили недостающим геном, а затем поместили обратно. Благодаря этому ее иммунная система значительно укрепилась.
Сначала в сфере генной терапии наблюдались некоторые успехи, но вскоре возникли сложности. В 1999 году клиническое испытание в Филадельфии остановилось, когда молодой человек умер из-за сильнейшего иммунного ответа, вызванного вирусом, переносящим терапевтический ген. В начале 2000-х годов при генной терапии иммунодефицита был случайно активирован раковый ген, и пять пациентов заболели лейкемией. Подобные трагедии не менее чем на десять лет заморозили большинство клинических исследований, но поэтапное совершенствование генной терапии заложило фундамент для более энергичных начинаний в сфере редактирования генома.
Редактирование генома
Вместо того чтобы лечить генетические дефекты с помощью генной терапии, некоторые врачи-исследователи принялись искать способы исправлять проблемы в зародыше. Их целью было редактирование дефектных последовательностей ДНК в нужных клетках пациента. Так родилось начинание, названное редактированием генома.
Гарвардский профессор Джек Шостак, научный руководитель Даудны, в 1980-х нашел один из ключей к редактированию гена: он научился разрывать обе нити двойной спирали ДНК, совершая так называемый двухцепочечный разрез. Когда такое случается, ни одна из нитей не может служить образцом для восстановления, или
Жалоба
Напишите нам, и мы в срочном порядке примем меры.