Александр Пономарев - Советские авиационные конструкторы Страница 4
- Категория: Документальные книги / Биографии и Мемуары
- Автор: Александр Пономарев
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 110
- Добавлено: 2018-08-13 07:35:07
Александр Пономарев - Советские авиационные конструкторы краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Александр Пономарев - Советские авиационные конструкторы» бесплатно полную версию:Александр Пономарев - Советские авиационные конструкторы читать онлайн бесплатно
А. Н. Туполев хотел, чтобы, получая памятный курс лекций, прочитанных Жуковским в 1913 г. и изданных в год Великой Октябрьской социалистической революции, каждый почувствовал то уважение и тепло к Николаю Егоровичу Жуковскому, которое сохранили к нему его ученики. Эти воспоминания А. Н. Туполева являются прекрасной характеристикой научных и личных качеств великого русского ученого.
Можно напомнить основные этапы развития научно-исследовательских работ в области аэродинамики самолетов отечественной авиации.
В первые послереволюционные годы бурное развитие аэродинамики как в теоретическом, так и в прикладном смысле, и в первую очередь в изучении пограничного слоя, получило свое практическое применение. Были заложены основы норм устойчивости и управляемости, изучены флаттер и бафтинг в применении к конкретным типам летательных аппаратов, разработаны серии новых скоростных и несущих профилей крыла с механизацией. Разработанные основы дозвуковой и трансзвуковой аэродинамики с введением в эксплуатацию новых аэродинамических труб позволили совершить скачок в летных данных самолетов, Этому способствовали и увеличение мощности двигателей, разработка воздушных винтов изменяемого шага, создание новых конструкционных материалов на основе алюминия и новых технологических процессов для обработки.
Как и во всякой науке, ведущая роль в решении задач в области аэродинамики принадлежала фундаментальным теоретическим исследованиям, на базе которых строились расчетные инженерные методы, составляющие основу прикладной теории. Корифеи советской аэродинамики, такие, как Н. Е. Жуковский, С. А. Чаплыгин, Б. Н. Юрьев, В. В. Голубев, М. В. Келдыш, С. А. Христианович, Г. П. Свищев, В. В. Струминский и многие другие, находились во главе прогресса авиации. Трудность прикладного использования теоретических исследований состояла в том, что теоретические решения могли быть найдены только для отдельных форм профилей, крыльев, тел вращения. Это означало, что почти для всех практически используемых в авиации форм из-за отсутствия в то время ЭВМ, позволяющих использовать численные методы, большая часть теоретиков была занята конкретными расчетами. Правильность базовой теории и приближенных методов решения требовали экспериментальной проверки подтверждения, а если, необходимо, то и экспериментальных поправок, что имело а имеет место и до настоящего времени.
Для таких проверок была построена экспериментальная труба ЦАГИ диаметром 3 м и затем вторая - диаметром 6 м. В создании экспериментальной базы ЦАГИ особенно велика роль А. Н. Туполева. Здесь, по мнению Г. П. Свищева, с полной силой проявился талант Андрея Николаевича как организатора крупного масштаба. Создание аэродинамических труб с такими размерами и высокими скоростями потока сделало возможным испытание крупных по размерам моделей, позволяющих точно моделировать формы самолетов, отрабатывать их аэродинамические характеристики, а часто испытывать и натурные элементы самолета, в том числе фюзеляж.
В числе первых достижений аэродинамиков тех лет была обклейка полотном гофра поверхностей фюзеляжа на самолете АНТ-4, что дало большой эффект по улучшению летных данных. В порядок допуска в воздух самолета в первый раз вмешался предшественник АТК ВВС, определивший, что без соответствующего свидетельства ЦАГИ ни одна машина не может первый раз подняться в воздух. От ЦАГИ летательный аппарат получает свой воздушный паспорт, дающий право на первый взлет.
Был создан справочник конструктора, в который были включены все разделы аэродинамики самолета: аэродинамика крыла и воздушных винтов, охлаждение моторов, аэродинамический расчет, устойчивость и управляемость, проверка на штопор, методика испытаний в аэродинамических трубах и методика летных испытаний.
Дальнейшим развитием этого направления было создание руководства для конструкторов, где давались рекомендации по вопросам от выбора геометрических форм самолета до получения результатов испытаний модели в аэродинамической трубе, позволяющие учесть особенности и детали реальной конструкции самолета.
Вторым направлением развития прикладной науки является накопление фактов. В аэродинамике, как и в любой науке, говорил А. М. Черемухин, факты для развития теории и прикладных методов расчета приносят познание явлений природы. Эти факты, как правильно сказано, узнаются из "неожиданных тел", возникающих при эксплуатации самолетов и их испытаниях, а также при изучении в аэродинамических трубах. На базе осмысления фактов идет разработка теории, а затем уже на базе теории и накопленных экспериментальных данных создаются прикладные расчетные методы.
Летные испытания всегда являлись отличным источником информации, так как они проходят в натурных условиях и являются наиболее достоверными источниками для получения научно-практических данных. Именно поэтому уже в прошлом в отечественных конструкторских бюро создавались экспериментальные самолеты, начиная с самолета АНТ-4, о котором уже говорилось.
Однако фундаментальные испытания оставались на стороне аэродинамических труб, которые строились в пашей стране, и их объемы и степень совершенства были уже таковыми, что в 1944 г. в трубе Т-101 ЦАГИ испытывался самолет Ту-2, а в кабине самолета находился летчик-испытатель.
С появлением турбореактивных двигателей появилась возможность преодоления "звукового барьера" и выхода самолета на сверхзвуковую скорость. Для исследований новых эффектов была построена трансзвуковая аэродинамическая труба, а затем введены в эксплуатацию аэродинамические трубы больших сверхзвуковых скоростей.
Особое место в аэродинамике и самолетостроении занимает познание превратностей трансзвуковой скорости полета, стоившей жизни многим летчикам-испытателям и ставившей в трудное положение тех, кто строит самолеты и их принимает в эксплуатацию.
Переход военной и гражданской авиации к сверхзвуковым скоростям полета и совершение длительных полетов потребовали решения многих задач. Для этого прежде всего было необходимо существенно повысить аэродинамическое качество самолета на этих скоростях и решить вопросы устойчивости и балансировки самолета во всем диапазоне скоростей - от дозвуковой до сверхзвуковой. Вопросы теплостойкости конструкционных материалов, смазки и герметиков стали одними из определяющих для конструкций, работающих в условиях циклического аэродинамического нагрева, характерного для высоких сверхзвуковых скоростей полета.
Последние 40 - 50 лет характеризовались бурным ростом скоростей, высот и значительным увеличением дальности полета на дозвуковой скорости, особенно для транспортных и пассажирских самолетов. За этот период авиация увеличила максимальные скорости примерно в 4 раза, высоту и дальность - в 2,5 - 3 раза. Этот скачок стал возможным благодаря широкому внедрению в авиацию реактивных двигателей.
(adsbygoogle = window.adsbygoogle || []).push({});Жалоба
Напишите нам, и мы в срочном порядке примем меры.