Сергей ЖИТОМИРСКИЙ - Ученый из Сиракуз. Архимед Страница 4
- Категория: Документальные книги / Биографии и Мемуары
- Автор: Сергей ЖИТОМИРСКИЙ
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 27
- Добавлено: 2018-08-13 15:48:57
Сергей ЖИТОМИРСКИЙ - Ученый из Сиракуз. Архимед краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Сергей ЖИТОМИРСКИЙ - Ученый из Сиракуз. Архимед» бесплатно полную версию:В книге в интересной форме рассказывается о великом математике, физике, астрономе и инженере древности. Изложение ведётся на фоне исторических условий, в которых протекали жизнь и деятельность Архимеда.
Сохранившиеся труды Архимеда, в основном математические, составляют целый том. Достижения ученого в области математики огромны. Он решил задачи об определении объема цилиндра и шара, объемов частей параболоидов вращения, был основоположником изучения спиралей, решил проблему квадратуры круга, вычислив довольно узкие границы, между которыми заключено число я. Архимед ввел в математику физическую задачу об определении положения центра тяжести плоских и пространственных фигур и для многих случаев решил ее. Он применил в геометрии метод «мысленного взвешивания», значительно развил предложенный греческим ученым Евдоксом «метод исчерпывания», позволивший исследовать свойства кривых второго порядка.
Однако научное творчество Архимеда не ограничено математикой. Он основоположник статики, гидростатики и математической физики вообще, выдающийся астроном и замечательный инженер. Именно этим сторонам деятельности великого ученого древности и посвящена настоящая книга.
Из трудов Архимеда в указанных областях сохранилось очень мало. В III в. н.э. греческий математик Папп Александрийский писал: «Архимед составил только одно механическое сочинение, а именно об устройстве небесного глобуса, не найдя из других предметов ничего, достойного сочинения». Видимо, Архимед не описывал и своих физических опытов, которые несомненно производил. Мало сведений осталось и о его астрономических работах.
Тем не менее многие результаты, полученные Архимедом в области механики и астрономии, восстановлены благодаря трудам исследователей его творчества.
Образ ученого, видевшего в математике не одну лишь игру возвышенного ума, а средство познания физических законов и орудие для решения сложных инженерных задач, близок нашему времени
Сергей ЖИТОМИРСКИЙ - Ученый из Сиракуз. Архимед читать онлайн бесплатно
Глава 2
Архимеда справедливо считают основоположником математической физики. С его именем связывается введение понятия центра тяжести, открытие законов рычага и разработка основ гидростатики. Известно, что он занимался и геометрической оптикой, хотя его работы в этой области до нас не дошли. Для древних греков физика была целостным учением о мире и считалась частью философии. Ее практические стороны, такие, как механика, относились к прикладным дисциплинам. Математика хотя и применялась, но от нее не требовали ни строгости, ни полноты описания явлений.
Архимед первым подошел к решению физических задач с широким применением математики. Как уже говорилось, он начал с механики. Античные механические представления настолько отличались от наших, что сейчас воспринимаются с трудом, хотя «Физику» Аристотеля (384…322 г. до н.э.) в течение многих столетий изучали, комментировали, считали безошибочной. Аристотель разделял движения на «естественные» и «насильственные». Естественным считалось стремление материи к своему «месту», зависящему от ее свойств, например стремление камня к центру; Земли, огня – от Земли вверх. Насильственные движения предполагали внешнюю причину – приложение силы. Механика Аристотеля не знала явления инерции: движение должно было прекратиться тотчас же после прекращения действия силы. Движение же по инерции объяснялось влиянием среды. Так, последователи Аристотеля считали, что при бросании камня возникает воздушный вихрь, несущий его после того, как камень покинул руку.
В своих трудах Архимед изучал только силы, которые с точки зрения аристотелевой механики вызывают «естественные» движения. Более того, он сразу упростил задачу, исключив из нее движение. Так появилась статика.
До Архимеда закон рычага рассматривался в сочинении «Механические проблемы», автором которого долгое время считался Аристотель.
В «Механических проблемах», которые составлены в форме вопросов и ответов, содержится описание ряда инструментов и механизмов (рычаг, колодезный журавль с противовесом, клещи, кривошип, полиспаст, зубчатые колеса, рычажные весы) и объяснение их действия на основе «принципа рычага» и правила: «Выигрываем в скорости (пути) – проигрываем в силе».
Однако отсутствие ясности в постановке задач в ряде случаев приводило к совершенно неправильным представлениям. Вот как, например, описывается в «Проблемах» работа корабельного руля: «Почему малый руль, привешенный на корме корабля, имеет столь большую силу?..
Быть может, потому, что руль есть рычаг, а рулевой есть то, что приводит его в действие? Стало быть, место, где он прикреплен к кораблю, становится точкой опоры, руль в целом – рычагом, море – грузом, а рулевой – движущей силой». Действие руля, основанное на силе реакции отталкиваемой им воды, разумеется, нельзя свести к простому рычагу.
Нечетким рассуждениям, содержавшимся в «Механических проблемах», Архимед противопоставил безупречную теорию, построенную по законам геометрии. Архимед сделал в механике то, что греческие геометры сделали в египетской и вавилонской землемерной науке. Вместо полей они рассматривали отрезки плоскостей, вместо межевых границ – бесконечно тонкие и абсолютно прямые (или имеющие строго обусловленную кривизну) линии. И тогда оказалось возможным найти между фигурами соотношения, о которых не подозревала восточная математика, удовлетворявшаяся решением практических задач.
Архимед придал геометрическим фигурам вес, равномерно распределенный по площади или объему. В отличие от автора «Механических проблем» он рассматривает не реальные рычаги или барабаны, а их идеализированные схемы. Это тем более замечательно, что Архимед был и блестящим практиком-конструктором.
Из механических, вернее, механогеометрических сочинений Архимеда до нас дошли только два: «О равновесии плоских фигур» и «Эфод, или послание Эратосфену о механических теоремах». Однако отрывки из его более ранних механических сочинений «О весах» и «О рычагах» сохранились в произведениях ряда авторов. Наиболее важные из них, относящиеся к учению о центре тяжести, имеются в «Механике» александрийского ученого I в. н.э. Герона и в «Математической библиотеке» ученого III в. н.э. (также александрийца) Паппа.
Центр тяжести Первым открытием Архимеда в механике было введение понятия центра тяжести, т.е. доказательство того, что в любом теле есть единственная точка, в которой можно сосредоточить его вес, не нарушив равновесного состояния.
Герон и Папп приводят со ссылкой на Архимеда доказательство существования центра тяжести. Герон предваряет теорему фразой, относящейся к рассмотрению Архимедом идеализированных «физико-математических» тел (метод абстракции). Герон пишет: «Никто не отрицает, что о наклонении и отклонении в действительности говорят только о телах. Если же мы говорим о плоских или телесных (объемных) фигурах, что некоторая точка является их центром поворота и центром тяжести, то это достаточно разъяснено Архимедом». Эта фраза подтверждает, что замена тел их теоретическими моделями была в науке новшеством, введенным Архимедом.
Архимедовы определение центра тяжести и теорему о его существовании мы приведем в пересказе Паппа.
Определение центра тяжести формулируется так: «…центром тяжести некоторого тела является некоторая расположенная внутри него точка, обладающая тем свойством, что если за нее мысленно подвесить тяжелое тело, то оно останется в покое и сохранит первоначальное положение».
Доказательство существования центра тяжести также основано на мысленном уравновешивании тела. В нем тело мысленно помещают на горизонтальную прямую, являющуюся основанием вертикальной плоскости (рис. 1): «Если какое-нибудь обладающее весом тело положить на прямую CD так, чтобы оно полностью рассекалось продолжением упомянутой плоскости, то оно может иногда занять такое положение, что будет оставаться в покое… Если затем переставить груз так, чтобы он касался прямой CD другой своей частью, то можно при поворачивании дать ему такое положение, что он, будучи отпущен, останется в покое… Если снова вообразить плоскость ABCD продолженной, то она разделит груз на две взаимно уравновешивающиеся части и пересечется с первой плоскостью… Если бы эти плоскости не пересеклись, то те же самые части были бы и уравновешивающимися и неуравновешивающимися, что нелепо».
Рис. 1. К определению центра тяжести тела
Действительно, если бы плоскости, рассекающие груз на уравновешенные части, оказались параллельными (не пересекались), то можно было бы уравновесить тело, не поворачивая его, а только сдвинув параллельно самому себе. Это означало бы, что к одной из частей добавился бы отнятый от второй части объем, заключенный между плоскостями, что должно было бы нарушить равновесие. Путем подобных же рассуждений доказывается, что на линии пересечения плоскостей находится единственная точка, являющаяся центром тяжести.
(adsbygoogle = window.adsbygoogle || []).push({});Жалоба
Напишите нам, и мы в срочном порядке примем меры.