Алексей Турчин - Война и еще 25 сценариев конца света Страница 2
- Категория: Документальные книги / Публицистика
- Автор: Алексей Турчин
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 62
- Добавлено: 2019-02-20 12:25:08
Алексей Турчин - Война и еще 25 сценариев конца света краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Алексей Турчин - Война и еще 25 сценариев конца света» бесплатно полную версию:Книга Алексея Турчина – это актуальный обзор последних научных наработок, описывающих, как и когда закончится существование человеческой цивилизации. В ней рассказано обо всех известных на сегодня видах глобальных рисков, которые могут уничтожить человечество, – от астероидов до запуска Большого адронного коллайдера и ядерной войны.Важность книги в эти дни необычайно велика по двум причинам. Во-первых, катастрофа человечества – вопрос, безусловно достойный нашего с вами внимания. Во-вторых, разработка многих новых технологий, способных вызвать глобальные риски, уже идет. Понимание того, сколь велики, реальны и близки риски конца света, должно заставить вас задуматься – как будете спасаться лично вы? Эта книга потребует недюжинной подготовки и силы характера, без которых лавина технологических угроз может сбить вас с ног. Если такое случится с вами, не пугайтесь и доверьтесь автору.
Алексей Турчин - Война и еще 25 сценариев конца света читать онлайн бесплатно
А что если излучение не сработает?
Предполагается, что даже если микроскопическая черная дыра возникнет в БАК и даже если она не разрушится Хокинговским излучением, она будет настолько малой массы и размеров, что будет намного меньше размеров атома, и ее гравитационное поле тоже будет простираться на расстояния, меньшие размеров ядра атома. Таким образом, такая черная дыра будет очень мало способна к каким-либо реакциям. Она может свободно летать среди вещества, никак с ним не взаимодействуя.
Вместе с тем существует теория, согласно которой в процессе формирования такая микроскопическая черная дыра приобретет электрический заряд или магнитный момент и в силу этого все же начнет гораздо быстрее притягивать к себе электрически заряженные ядра атомов и электроны. По мере роста ее массы ее способность поглощать материю тоже будет расти, и не известно, по какому закону – степенному или экспоненциальному.
Небольшим утешением может быть то, что процесс начального роста микроскопической черной дыры может быть крайне медленным. (Можно, например, предположить, что катастрофа с микроскопической черной дырой уже произошла при работе предыдущих ускорителей (например, RHIC) и мы пока не наблюдаем ее проявлений, так как она пока еще не выросла.)
То есть черная дыра может возникнуть на коллайдере БАК, и никто этого не заметит. Она погрузится в центр Земли, где начнет очень медленно, но с растущей скоростью набирать массу. По некоторым предположениям, это потребует миллионов и миллиардов лет, прежде чем станет заметным – а значит, не угрожает безопасности человечества. Однако, как показано в статье Benjamin Koch, Marcus Bleicher Horst Stb'cker. Exclusion of black hole disaster scenarios at the LHC (http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.3349v1.pdf), в случае, если наша Вселенная имеет одно скрытое измерение, время поглощения Земли составит 27 лет, а если два – то десять тысяч триллионов лет. (Понятно, что только первый сценарий заслуживает внимания.) 27 лет – это, конечно, не те несколько секунд, за которые поглощается Земля на известном видеоролике, выложенном на YouTube.
Отметим, однако, что человечество погибнет гораздо раньше, чем произойдет полное поглощение Земли черной дырой. Поскольку примерно половина массы при поглощении вещества черными дырами переходит в энергию излучения (за счет этого светят квазары), то процесс поглощения планеты будет сопровождаться ее разогревом. То есть вначале, например, из-под земли начнут вырываться потоки раскаленных газов в виде мощнейших вулканических извержений, которые сделают атмосферу непригодной для дыхания.
Итак, микроскопическая черная дыра может быть опасной, только если ряд теоретических предположений окажется истинным. Понятно, что это маловероятно, хотя каким образом применять понятие вероятности к тем или иным свойствам законов Вселенной, не вполне ясно.
Однако это еще не все: кроме теоретического способа обоснования безопасности коллайдера существует еще один – основанный на эмпирических свидетельствах.
Эмпирические «заверения в безопасности» строятся на том факте, что энергии космических лучей, которые непрерывно бомбардируют атмосферу Земли, гораздо выше энергий, которые будут достигаться в коллайдере. А раз Земля до сих пор существует, то, значит, и установка безопасна. Более продвинутые версии доказательств используют тот факт, что существуют Луна, нейтронные звезды и белые карлики, несмотря на их непрерывную бомбардировку космическими лучами.
То есть любые эмпирические доказательства безопасности основываются на определенных аналогиях, при том что БАК – сооружение уникальное. Например, говорится о том, что происходящее в коллайдере аналогично тому, что уже триллион триллионов раз происходило на Земле и во Вселенной без каких-либо негативных последствий. Действительно, нет сомнений в том, что случились триллионы столкновений атмосферы Земли с космическими лучами – однако то, что этот процесс ПОЛНОСТЬЮ аналогичен тому, что происходит в коллайдере, это лишь предположение. (Подробно возражения относительно «аналогичности» процессов приводятся в главе «Физические эксперименты», при этом следует подчеркнуть, что наличие возражений само по себе вовсе не означает, что катастрофа с коллайдером неизбежна или что я в ней уверен.)
Нельзя сказать, что сомнения относительно безопасности коллайдера замалчивались – в течение последних лет вышло несколько статей, в которых обосновывается невозможность катастрофы с черными дырами. При этом, однако, общее свойство этих статей состоит в том, что они появились ПОСЛЕ того, как решение о строительстве коллайдера было принято, десятки тысяч физиков были наняты на работу и миллиарды долларов были потрачены. То есть цель этих статей – не исследовать вопрос о том, каковы реальные шансы катастрофы, а успокоить публику и обеспечить продолжение исследований. (Этим данные статьи отличаются, например, от рассекреченного недавно отчета LA-602 о рисках термоядерной детонации атмосферы, который был представлен перед первыми испытаниями атомной бомбы в США в 1945 году Комптоном, цель которого состояла в исследовании вопроса, а не в успокоении публики.)
Другими словами, гораздо честнее было бы использовать в качестве обоснований рисков не публикации 2007–2008 годов, приуроченные к завершению работ по строительству коллайдера, а публикации 1999 года, на основании которых принимались решения о строительстве. Отметим, что наихудшая оценка риска в публикациях 1999 года, как сообщает Э. Кент в статье «Критический обзор оценок рисков глобальных катастроф», была 1 к 5000.
Кстати, вопрос о том, какой риск катастрофы с коллайдером является приемлемым, заслуживает отдельного рассмотрения.
К 2004 году наиболее твердая оценка риска, выведенная из эмпирических астрофизических наблюдений, показывала шансы получить катастрофу 1 к 50 миллионам. Очевидно, что эта оценка была принята в качестве достаточной, так как строительство было продолжено. Однако математическое ожидание числа жертв, то есть произведение числа погибших – 6 миллиардов на вероятность события составляет в данном случае 120 человек. Ни один другой научный проект с таким ожидаемым числом возможных жертв никогда бы не был допущен к реализации. Например, при захоронении радиоактивных отходов в Великобритании допустимым принимается ожидаемое число жертв только в 0,00001 человека в год. Отметим, что здесь учитывается только гибель ныне живущих людей. Однако вымирание человечества означало бы и невозможность рождения всех последующих поколений людей, то есть число неродившихся людей могло бы составлять тысячи триллионов. В этом случае математическое ожидание числа жертв также возросло бы на несколько порядков. Наконец, гибель Земли означала бы и гибель всей информации, накопленной человечеством.
Другим способом оценки рисков является так называемый астероидный тест. Утверждается, что если риск, создаваемый коллайдером, меньше, чем риск человеческого вымирания в результате падения огромного астероида (примерно в 1 к 100 миллионам в год), то риском первого можно пренебречь. Однако сам риск падения такого астероида является неприемлемым – ведь ради его предотвращения затеваются специальные программы. То есть принятие астероидного теста равносильно утверждению о том, что нет разницы, погибнут ли в авиакатастрофе 300 человек или 301 человек.
Третий способ оценки рисков связан с анализом затрат и рисков, выраженных в денежной форме. Сделать это пытается, например, американский судья и популяризатор науки Р. Познер в своей книге «Катастрофа: риск и реакция».
Сумма выгод, которые мы ожидаем получить от ускорителя, примерно равна его стоимости (если бы она была значительно – скажем, в десять раз – больше, то строительство ускорителей было бы крайне выгодным бизнесом, и многие бы им занимались). Хотя огромная выгода возможна, например, в случае невероятного ценного открытия, вероятность этой выгоды не оценивается как большая.
Стоимость ускорителя составляет около 10 миллиардов долларов. С другой стороны, можно оценить человеческую жизнь. (Американские страховые компании оценивают год жизни здорового человека в 50 000 долларов.) Отсюда и из разных других оценок получается, что цена человеческой жизни в развитом обществе составляет порядка 5 миллионов долларов. Тогда цена всего человечества примерно равна 3x1016 долларов. В этом случае приемлемым оказывается риск менее чем 1 к 3 миллионам. Однако если учитывать цену неродившихся поколений, то потребуются гораздо более строгие границы риска. Кроме того, выгодополучатели и объекты риска не совпадают. Выгоду от работы ускорителя получат в первую очередь ученые и, кроме того, люди, интересующиеся наукой, тогда как большинством жертв возможной катастрофы будут люди, которые вообще никогда об ускорителе не слышали.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.