Антон Первушин - Кто угрожает России? Вызовы будущего Страница 20

Тут можно читать бесплатно Антон Первушин - Кто угрожает России? Вызовы будущего. Жанр: Документальные книги / Публицистика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Антон Первушин - Кто угрожает России? Вызовы будущего

Антон Первушин - Кто угрожает России? Вызовы будущего краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Антон Первушин - Кто угрожает России? Вызовы будущего» бесплатно полную версию:
В эпоху перемен нарастают тревожные ожидания, которые подогреваются безответственными прогнозами, авторы которых словно соревнуются между собой в описании катастроф, которые, по их мнению, угрожают нашей стране.Однако автор данной книги – известный ученый и писатель-фантаст Антон Первушин – далек от модных футурологических истерик.Он предлагает читателю спокойный и смелый разговор на тему угроз и вызовов, с которыми России (а чаще всего и многим другим развитым странам) предстоит действительно столкнуться в XXI веке.От «сетевой войны» – до энергетического кризиса.От экономического противостояния – до вариантов причин Третьей мировой.Есть ли настоящий повод для паники?

Антон Первушин - Кто угрожает России? Вызовы будущего читать онлайн бесплатно

Антон Первушин - Кто угрожает России? Вызовы будущего - читать книгу онлайн бесплатно, автор Антон Первушин

Уже на стадии разработки программы эксперимента был допущен ряд грубейших ошибок. Так, испытания считались руководством ЧАЭС чисто электротехническими, не влияющими на ядерную безопасность реактора, поэтому не согласовывались с генпроектантом, главным конструктором и научным руководителем. Программой не только не были предусмотрены дополнительные меры безопасности, но даже снижены существующие штатные меры. Так, в ней предписывалось отключить систему аварийного охлаждения реактора на весь период испытаний (4 часа), поскольку считалось, что она может автоматически сработать и сорвать эксперимент.

Испытания должны были проводиться на тепловой мощности 700-1000 МВт. Примерно за сутки до аварии мощность реактора была снижена до 50 % (1600 МВт), однако дальнейшее снижение мощности запретил диспетчер электросети. Продолжение снижения мощности энергоблока было разрешено диспетчером 25 апреля за час до полуночи. В итоге длительное время активная зона реактора находилась в режиме «отравления» продуктами распада – радиоактивным ксеноном-135, что неизбежно привело к дальнейшему падению мощности. Компенсация производилась операторами, выдвигавшими из активной зоны стержни-поглотители В течение примерно двух часов мощность реактора была снижена до уровня, предусмотренного программой (около 700 МВт тепловых), однако была допущена ошибка, в результате которой тепловая мощность реактора начала быстро падать, достигнув величины в 30 МВт. Персонал принял роковое решение о восстановлении мощности реактора, снова приступив к извлечению стержней. Через несколько минут удалось добиться начала ее роста, и в дальнейшем – стабилизации на уровне 160–200 МВт. Всё это время продолжалось «отравление», и операторы продолжали поднимать стержни. В момент аварии в крайнем верхнем положении находилось 205 стержней, то есть внизу оставалось только 6 стержней, что явилось грубейшим нарушением регламента эксплуатации.

26 апреля в 1:23:04 начался эксперимент. Из-за снижения оборотов насосов, подключенных к «выбегающему» генератору, и так называемого положительного парового коэффициента реактивности (который был обусловлен конструкцией РБМК-1000) реактор испытывал тенденцию к самопроизвольному увеличению мощности, что и произошло – тепловая мощность скачком увеличилась до 530 МВт. Только в этот момент персонал осознал всю меру опасности. В 1:23:40 начальник смены дал команду нажать кнопку АЗ-5 – по ней поглощающие стрежни начали движение в активную зону. Это была первая попытка предотвратить аварию и последняя из вызвавших ее причин. Дело в том, что каждый из стержней-поглотителей имеет на своем нижнем конце вытеснитель – алюминиевый цилиндр, заполненный графитом, поглощающий нейтроны в значительно меньшей мере, чем вода. Введение вытеснителей в активную зону спровоцировало резкий рост потока нейтронов, что повлекло скачкообразный рост мощности реактора и интенсивное парообразование. Реактор в буквальном смысле закипел.

Аварийный разгон сопровождался мощными ударами и отключением света. К 1:23:44 мощность цепной реакции в сто раз превысила номинальную. Бурное вскипание теплоносителя, в который попали частицы разрушаемых ТВЭЛов, привело к повышению давления в технологических каналах, их разрыву и взрыву, разрушившему реактор. Спустя две секунды после первого взрыва прогремел второй, причиной которого, по мнению специалистов, было образование и воспламенение смеси кислорода с водородом. При этом разрушилась часть здания реакторного цеха, наружу из реактора было выброшено около четверти графита и часть топлива. Очевидцы наблюдали фейерверк вылетающих раскаленных и горящих фрагментов. Часть из них, упав на крышу машинного зала, вызвала пожар.

Поток горячего воздуха поднял в атмосферу радиоактивные продукты деления. Суммарный выброс составил 3,5 % от общего количества радионуклидов в реакторе на момент аварии. Высота струи превышала 1200 метров, а уровни радиации в ней достигали 1000 мР/ч даже на расстоянии 10 километров от станции. Произошло радиоактивное загрязнение не только 30-километровой зоны вокруг АЭС, но и значительных территорий в ряде областей Украины, Белоруссии и России.

Непосредственно во время взрыва на 4-ом энергоблоке погиб один человек, еще один скончался в тот же день от полученных ожогов. У 134 сотрудников ЧАЭС и членов спасательных команд, находившихся на станции во время взрыва, развилась лучевая болезнь, 28 из них умерли.

Вечером 26 апреля было принято решение о начале эвакуации населения. Всего из 188 населенных пунктов было эвакуировано около 116 000 человек.

* * *

Мировой атомной энергетике в результате Чернобыльской аварии был нанесен серьезный удар. С 1986 до 2002 года в странах Северной Америки и Западной Европы не было построено ни одной новой АЭС, что связано как с давлением общественного мнения, так и с тем, что значительно возросли страховые взносы и уменьшилась рентабельность ядерной энергетики.

В СССР было законсервировано или прекращено строительство и проектирование 10 новых АЭС, заморожено строительство десятков новых энергоблоков на действующих АЭС в разных областях и республиках.

В то же время перед атомщиками была поставлена задача повысить уровень безопасности существующих АЭС с реакторами РБМК.

Прежде всего, разумеется, они доработали системы управления регулирующими стержнями. Сегодня просто невозможно вывести из реактора опасное количество стержней на опасное расстояние. Больше того, извлекать их даже для замены и ремонта можно только поштучно.

Аварийную автоматику на работающем реакторе сможет отключить теперь разве что направленный взрыв – столько в нее введено дополнительных блокировок. Но и в этом случае все регулирующие стержни немедленно и полностью погрузятся в реактор.

Заменены вытеснители на концах стержней-поглотителей. Вместо графита – удобного в штатных режимах, но опасного в аварийных – поставлена обычная реакторная конструкционная сталь. Сама конструкция стержней доработана так, чтобы нижний конец вытеснителя всегда находился на границе активной зоны, а длина поглощающей части увеличена до 6,8 метра. При этом часть стержней переведена в режим быстрой аварийной защиты, что сократило время аварийного останова реактора до двух секунд.

Была изменена геометрия каналов. Заметно выросла доля воды в общем замедлении нейтронов, что позволило устранить опасный положительный паровой коэффициент реактивности – РБМК обрели автоматическую стабилизацию, ранее достигнутую на реакторах других типов.

* * *

Таким образом, реакторы РБМК ныне вполне безопасны. Это, однако, не способствует их эффективности и экономии средств при эксплуатации, да и предубеждение слишком велико – поэтому российская атомная энергетика делает сегодня ставку на реакторы других типов: ВВЭР (водо-водяной корпусной реактор) и РБН (реактор на быстрых нейтронах).

За прошедшие с Чернобыльской аварии годы были разработаны новые варианты этих реакторов, и некоторые из них уже эксплуатируются. Так, российские реакторы ВВЭР-1000 установлены на новых АЭС в Индии, Китае, Иране. Шесть ВВЭР-100 Cанкт-петербургского производственного объединения «Ижорский завод» работают на Запорожской АЭС – крупнейшей АЭС в Европе.

В самой России в настоящее время на 10 атомных станциях (Белоярская, Билибинская, Волгодонская, Калининская, Кольская, Курская, Ленинградская, Нововоронежская, Смоленская), входящих в состав концерна «Росэнергоатом», эксплуатируется 31 энергоблок (РБМК, ВВЭР, РБН) установленной мощностью 23,24 ГВт. Это обеспечивает 15 % энергопотребления страны (для сравнения – в развитых странах вклад АЭС в среднем превышает 32 %). Поскольку в ближайшем будущем старые энергоблоки будут выведены из эксплуатации и законсервированы, до 2030 года российским атомщикам придется построить как минимум 42 энергоблока. В таком случае реакторы РБМК уйдут в прошлое, а их заменят реакторы ВВЭР нового поколения. Кроме того, руководство «Росэнергоатома» предполагает в октябре 2010 года ввести в эксплуатацию первую в мире плавучую тепловую электростанцию малой мощности (АТЭС ММ) с реакторами КЛТ-4C, которая должна стать прототипом целой линейки таких электростанций.

Планы впечатляют, однако уже на первом этапе их реализации возникли серьезные проблемы. Так, из пяти блоков, намеченных к пуску до 2008 года, в эксплуатацию удалось ввести лишь два: первый энергоблок на Волгодонской АЭС (пуск состоялся в 2001 году) и третий на Калининский АЭС (ввод в эксплуатацию состоялся в 2005 году). При этом затраты на строительство третьего блока Калининской АЭС превысили утвержденную в 2002 году смету расходов в два раза!

В октябре 2006 года была утверждена новая программа – «Развитие атомного энергопромышленного комплекса России на 2007–2010 гг. и на перспективу до 2015 года». В ее рамках пуск второго энергоблока Волгодонской АЭС запланирован на 2009 год (реально, судя по темпам строительства – не ранее 2012 года). Четвертый блок Калининской АЭС вместо 2007 года, как это планировалась в Энергетической стратегии, теперь намечено пустить в 2011 году (в реальности он будет запущен не ранее 2014 года). А недостроенные пятый и шестой блоки Курской АЭС были и вовсе выкинуты из новой программы.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.