Вокруг Света - Журнал «Вокруг Света» №1 за 2004 год Страница 7
- Категория: Документальные книги / Прочая документальная литература
- Автор: Вокруг Света
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 23
- Добавлено: 2018-12-14 12:44:14
Вокруг Света - Журнал «Вокруг Света» №1 за 2004 год краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Вокруг Света - Журнал «Вокруг Света» №1 за 2004 год» бесплатно полную версию:Вокруг Света - Журнал «Вокруг Света» №1 за 2004 год читать онлайн бесплатно
В 1657 году голландский ученый Христиан Гюйгенс изготовил механические часы с маятником. И это стало следующей вехой в часовом деле. В его механизме маятник проходил между зубьями вилки, которая позволяла специальному зубчатому колесу проворачиваться ровно на один зуб за полкачания. Амплитуда движения маятника в таких часах была большой, и точность хода зависела не только от длины стержня, на котором висел груз, но и от размаха его качания. Точность часов возросла многократно, но перевозить такие часы все равно было невозможно.
В 1670 году произошло кардинальное усовершенствование спускового механизма механических часов – был изобретен анкерный спуск, позволивший существенно уменьшить амплитуду колебаний и применить длинные секундные маятники. После тщательной настройки, в соответствии с широтой месторасположения и температурой в помещении, такие часы имели неточность хода всего несколько секунд в неделю. Надо отметить, что взаимоотношения спускового механизма и маятника во всех часах имеют достаточно сложный характер. И если маятник задает темп вращения колесиков часового механизма, то именно спусковой механизм подталкивает маятник, делая его колебания незатухающими.
Эру компактных и переносимых механических хронометров открыло изобретение все тем же Гюйгенсом в 1675 году вращательного балансира, а также использование вместо гирь пружины. Соединение крутильного маятника, спиральной пружины и анкерного спуска открыло дорогу не только морской навигации, но и созданию массовых малогабаритных часов, а еще значительно повысило точность астрономических наблюдений и даже позволило обнаружить неравномерность вращения Земли.
Но тем не менее лунные таблицы, составляемые астрономами того времени для определения долготы, все еще «грешили» неточностями – от 1 до 2,5°, что соответствовало ошибке ни много ни мало 60—150 км – в Париже и Лондоне и 100—250 км – в районе экватора. А потому настоятельно требовались более совершенные методы навигации и, следовательно, более точные морские хронометры. И это было не просто благим пожеланием корабельщиков, а наиважнейшей задачей мореплавания. 29 сентября 1702 года эскадра численностью в 21 корабль под началом адмирала Клодисли Шовела вышла из Гибралтара в Англию.
Погода была неважной, но, как только небо очистилось от туч, штурманам удалось определить широту местонахождения. А вот долготу в то время точно измерить не могли… Результатом ошибки в расчетах стало то, что 5 кораблей эскадры в тумане налетели на Гилстонские рифы и 1 600 человек, в том числе адмирал, герой Англо-французской войны, погибли. Эта трагедия стала для Британии страшным потрясением. Вскоре парламент подготовил билль, согласно которому беспрецедентно огромная по тем временам награда размером в 20 тысяч фунтов (что было эквивалентно 150 кг золота) причиталась тому, кто на практике решит проблему определения долготы на море. Но несмотря на то что хронометрический метод определения долготы был известен, награда ждала своего героя 60 лет…
Морские часы были изготовлены в 1735 году йоркширским столяром Джоном Харрисоном. Их точность составляла ± 5 секунд в сутки, и они уже были вполне пригодны для морских путешествий. Однако, оставшись недовольным своим первым хронометром, изобретатель трудился еще почти три десятка лет, прежде чем в 1761-м начались полномасштабные испытания усовершенствованной модели, которая уходила меньше чем на секунду в сутки. Первая часть награды была получена Харрисоном в 1764 году, после третьего длительного морского испытания и не менее длительных канцелярских мытарств. Полностью вознаграждение изобретатель получил только в 1773 году. Испытывал хронометр капитан Джеймс Кук, составивший благодаря ему карту островов Полинезии. В судовом журнале он воздал хвалу детищу Харрисона: «Верному другу – часам, нашему проводнику, который никогда не подводит». С этого момента понятия «навигация» и «время» стали поистине неразлучны.
Гальваника против механикиВ начале XIX столетия, совпавшем с бурным развитием технического прогресса, с проблемой хранения времени столкнулись почтовые службы, пытавшиеся обеспечить движение почтовых экипажей по расписанию. В результате они обзавелись возимыми часами. А с появлением железных дорог часы получили в свое распоряжение и кондукторы. Чем активнее развивалось трансатлантическое сообщение, тем насущнее становилась проблема обеспечения единства отсчета времени по разные стороны океана. В этой ситуации возимые часы уже не годились. И тут на помощь пришло электричество, в те времена называемое гальванизмом. Электрические часы решили проблему синхронизации на больших расстояниях – сначала на материках, а потом и между ними. В 1851 году кабель лег на дно Ла-Манша, в 1860-м – Средиземного моря, а в 1865-м – Атлантического океана. А с 1899 года началась эра передачи сигналов точного времени по радио.
На начальной стадии развития электрических часов электроэнергия служила лишь для завода механического ведущего устройства – груза или пружины. Электрические часы, существенно отличающиеся от классических шестеренчатых, сконструировал англичанин Александр Бэйн, изобретатель электромеханического телеграфа. В 1840 году он получил патент на электрические часы, главными деталями которых были обычные механические, приводимые в действие пружиной, зато индикатор времени был уже основан на суммировании электрических импульсов, подаваемых маятником часов. К 1847 году Бэйн завершил работу над действительно электрическими часами, сердцем которых был контакт, управляемый маятником, раскачиваемым электромагнитом. Колебания складывал электромагнитный счетчик, соединенный колесной передачей со стрелками на циферблате.
В начале XX века электрические часы окончательно вытеснили механические в системах хранения и передачи точного времени. Наиболее точными часами, основанными на свободных электромагнитных маятниках, были часы Уильяма Шортта, установленные в 1921 году в Эдинбургской обсерватории. Из наблюдения за ходом трех часов Шортта, изготовленных в 1924, 1926 и 1927 годах в Гринвичской обсерватории, определили их среднесуточную погрешность в 1/300 с, что соответствует ошибке 1 секунда в год. Точность часов со свободным маятником Шортта позволила обнаружить изменения продолжительности суток. И в 1931 году начался пересмотр абсолютной единицы времени – звездного времени, с учетом движения земной оси. Эта ошибка, которой до того пренебрегали, достигала в своем максимуме 0,003 секунды в сутки. Новая единица времени была позднее названа Средним звездным временем. Точность часов Шортта была непревзойденной, вплоть до появления кварцевых часов.
Предтеча высокоточностиВ 1918 году были впервые построены часы, которые использовали свойства кварцевого резонатора. В 1937-м кварцевые часы, разработанные Льюисом Эссеном, были установлены в Гринвичской обсерватории, их точность составляла около 2 мс/ сутки. А в 1944-м международные сигналы времени в виде шеститочечных сигналов Би-би-си генерировались с помощью кварцевых часов, точность которых возросла уже до 0,1 мс/сутки.
Во второй половине ХХ века пришла пора часов электронных. В них место электрического контакта занял транзистор, а в роли маятника выступил кварцевый резонатор.
Сегодня именно кварцевые резонаторы в наручных часах, персональных компьютерах, стиральных машинах, автомобилях, сотовых телефонах формируют время нашей жизни.
Атомный эталон
Новый толчок в развитии устройств для измерения времени был дан физиками-атомщиками. В 1964 году двое советских ученых – Н.Г. Басов и А.М. Прохоров – и американец Чарльз Таунс получили Нобелевскую премию по физике за работы по развитию микроволновой спектроскопии. А в 1949-м были построены первые атомные часы, где в качестве источника колебаний выступил не маятник и не кварцевый генератор, а сигналы, связанные с квантовым переходом электрона между двумя энергетическими уровнями атома. Эта электромагнитная волна, то есть фотон радиоизлучения, характеризуется очень высокой стабильностью энергии и частоты колебаний.
Поскольку атомы могут как отдавать, так и поглощать фотоны, первые атомные часы действовали по принципу поглощения фотонов атомами аммиака, но так как на практике они оказались не очень точны, к тому же громоздки и дороги, то широкого распространения не получили. Тогда было решено обратиться «за помощью» к другому химическому элементу – цезию, атомы которого при надлежащем выборе условий способны поглощать электромагнитные волны с частотой 9192 МГц. Используя это его свойство, Джон Шервуд и Роберт Мак-Кракен создали первый цезиевый пучковый резонатор, а в 1955-м появились первые атомные часы на основе атомов цезия. Помимо него, в атомных часах также используются атомы водорода и рубидия.
Вообще же, со времени изобретения атомных часов их точность повышалась в среднем вдвое каждые 2 года, и хотя предела совершенству в этом вопросе не видно и по сей день, в 1967 году было решено перейти на атомный эталон времени. И вот почему. О том, что вращение Земли замедляется, ученые знали давно, но в какой-то момент выяснилось, что величина этого замедления – непостоянна, да и определить закономерности вариаций скорости вращения Земли не представляется возможным. И это значительно затрудняло работу астрономов и хранителей Времени. В настоящее время Земля вращается с замедлением примерно на 2 миллисекунды за 100 лет. При этом сезонные и 10-летние колебания длительности суток также достигают тысячных долей секунды. Поэтому на очередном этапе развития общества точность Гринвичского среднего времени – общепринятого с 1884 года мирового эталона, определение которого основывалось на среднем солнечном времени, – стала недостаточной.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.