Александр Потупа - Бег за бесконечностью Страница 2

Тут можно читать бесплатно Александр Потупа - Бег за бесконечностью. Жанр: Фантастика и фэнтези / Научная Фантастика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Александр Потупа - Бег за бесконечностью

Александр Потупа - Бег за бесконечностью краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Александр Потупа - Бег за бесконечностью» бесплатно полную версию:

Александр Потупа - Бег за бесконечностью читать онлайн бесплатно

Александр Потупа - Бег за бесконечностью - читать книгу онлайн бесплатно, автор Александр Потупа

У. Крукс - типичный представитель ученого мира старых, добрых времен. Человек разнообразных интересов, он внес весомый вклад в развитие нескольких областей естествознания, например, именно он открыл химический элемент таллий.

Основные достижения У. Крукса были связаны с его работами по газоразрядным трубкам и глубокими исследованиями свойств катодных лучей. Исключительная изобретательность в создании трубок различных конфигураций с самой разнообразной внутренней "начинкой" позволила ему доказать, что новые лучи распространяются прямолинейно, могут отклоняться магнитным полем и обладают импульсом. Очень важно и то, что У. Крукс сумел заглянуть за границы, очерченные доступными ему опытными данными, - он, по-видимому, первым предсказал, что заряженные частицы, вылетающие из катода, являются особым, не сводящимся к уже известным, состоянием вещества.

Однако возражения противников корпускулярной гипотезы и после замечательных экспериментов У. Крукса не были устранены. В борьбе научных идей опыт действительно главный судья, но, к сожалению, не только одного, а порой и десятка независимых опытов не хватает для строгого выбора между двумя конкурирующими гипотезами.

Само существование противоположных мнений по поводу одного и того же явления - наилучший способ ускорить постановку опытов, способных разрешить все споры. Другой вопрос, что не всегда имеется возможность немедленно добиться решения именно таким естественным путем, например, из-за несовершенства экспериментальной техники.

Какие же преграды стояли на пути корпускулярной гипотезы о природе катодных лучей после работ У. Крукса? В последнее десятилетие XIX века этим работам и блестящему исследованию двадцатипятилетнего французского физика Ж. Перрена, который доказал, что новые лучи переносят отрицательный электрический заряд, противостояли удивительные результаты самого Г. Герца, ставшего к тому времени благодаря открытию радиоволн одним из крупнейших авторитетов в экспериментальной физике. А результаты Г. Герца были и впрямь поразительны. Несмотря на превосходное владение методами постановки самых тонких опытов, он не сумел обнаружить отклонение катодных лучей в электростатическом поле. Разве могут добропорядочные электрически заряженные частицы не реагировать на такое поле? Но почему же тогда они ведут себя как следует под действием магнитов?

Так, буквально на самом пороге нового века, уже у готовой, ладно сбитой колыбели физики элементарных частиц возникла трудная, пожалуй, даже загадочная ситуация.

Решение было найдено Дж. Дж. Томсоном. Он рассуждал просто и убедительно. Если катодные лучи во всех других экспериментах вели себя как заряженные частицы, то они непременно должны отклоняться электростатическим полем. Если этого не наблюдается, то "виноваты" не обязательно лучи, возможно, "виновато" поле, которое просто не проникает в трубку. Но экранировать такое поле способен лишь хороший проводник (электростатическое поле в проводящую среду не проникает), а стекло трубки таковым не является, значит, проводящей средой является остаточный воздух внутри трубки. Дальнейшее было, как говорится (к сожалению, только "как говорится"!), делом техники. Давление газа было заметно понижено, и необходимое отклонение катодных лучей стало экспериментальным фактом.

Впоследствии, добиваясь взаимной компенсации отклонений с помощью одновременного наложения известных электрических и магнитных полей, Дж. Дж. Томсон сумел определить такую важную характеристику новых частиц, как отношение заряда к массе e/m. Именно эта величина, а не заряд и масса по отдельности, была доступна в то время прямому измерению. С этого момента и отсчитывается обычно дата открытия электрона и рождения всей физики элементарных частиц.

Конечно же, решение одной крупной задачи немедленно повлекло за собой постановку других задач, проясняющих ситуацию с новыми частицами. В этом смысле 1897 год - не более чем удобная и вполне разумно выбранная мемориальная вешка в биографии электрона. Достаточно сказать, что сам этот термин был придуман раньше и относился совсем к иному объекту. Англичанин Дж. Стони, тщательно исследовавший открытое М. Фарадеем явление электролиза, назвал электроном отрицательный заряд одновалентного иона еще в 1891 году. Поэтому в отношении новой частицы довольно долгое время существовала изрядная терминологическая неразбериха - ее отмечали в литературе и как "ион", и как "электрон", и как "корпускулу электричества" (последнее название употреблял сам "Джи-Джи"). Как ни странно, эта путаница оказывала заметное влияние на научные выводы ряда работ, но уже с первых лет нового века недоразумение было полностью устранено.

Примерно к тому же времени завершился цикл экспериментов Дж. Дж. Томсона, Ч. Вильсона, Р. Милликена по измерению заряда и массы электрона.

Так электрон окончательно вошел в физику, но отнюдь не для того, чтобы занять подходящий для легчайшей частицы вещества скромный дальний уголок, а с явными революционными намерениями, и действительно, примерно за десять-пятнадцать лет своего существования он полностью подорвал фундамент классической науки. Роль открытия электрона превосходно характеризуется следующим высказыванием английского ученого Г. Липсона: "Физика, да и вообще вся жизнь на Земле, теперь уже никогда не сможет быть такой, как до этого открытия".

Мы в определенной степени сумели убедиться, что открытие электрона длительный и многотрудный процесс, но он дает представление лишь об одном из путей к физике элементарных частиц. На самом деле у колыбели этой науки образовался целый оживленный перекресток. Сюда широкими столбовыми дорогами и узенькими, едва заметными тропинками стекались практически все главные трудности физики XIX века.

У ПЕРЕКРЕСТКА ЗАГАДОК

Лет сто назад в физике возник взрывообразный интерес ко всякого рода таинственным и загадочным излучениям и свечениям. Пышные прилагательные в этом предложении вовсе не дань возвышенному стилю и некоторой склонности к мистико-романтической образности, характерной для популярных корреспонденций тех времен. Наблюдалось, действительно, множество различных излучений: светился остаточный газ и флуоресцировала стеклянная колба в уже знакомых нам экспериментах с газоразрядной трубкой, красиво фосфоресцировали соединения урана, наконец, в 1887 году мир узнал, что "генератор Герца" излучает какие-то невидимые электромагнитные волны... Причем большинство из этих излучений не могли быть сколь-нибудь глубоко объяснены. Отсюда и вполне понятный ореол таинственности.

Однако "лучевой бум" оказался теснейшим образом связанным с результатами последнего пятилетия прошлого века. В самом конце 1895 года немецкий физик К. Рентген обнаружил, что из точки пересечения потока катодных лучей со стеклянной оболочкой трубки исходит странное излучение, вызывающее флуоресценцию ряда веществ и обладающее невероятной проникающей способностью. Открытие Х-лучей, как окрестил их сам К. Рентген, обессмертило его имя: он стал через шесть лет первым в истории лауреатом Нобелевской премии.

(adsbygoogle = window.adsbygoogle || []).push({});
Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.