Тед Чан - Деление на ноль Страница 3
- Категория: Фантастика и фэнтези / Научная Фантастика
- Автор: Тед Чан
- Год выпуска: 2005
- ISBN: 5-17-020877-4
- Издательство: АСТ
- Страниц: 6
- Добавлено: 2018-08-17 09:43:01
Тед Чан - Деление на ноль краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Тед Чан - Деление на ноль» бесплатно полную версию:Тед Чан — из тех авторов, которые пишут редко, но метко. Данный сборник — все, что Чан наработал за двенадцать лет. Казалось бы, невероятно мало: 7 рассказов и одна зарисовка, — но если учесть, что из них “Вавилонская башня” (дебют!), “История твоей жизни” и “Ад — это отсутствие Бога” получили по “Небьюле”, а последний удостоился еще и премии “Хьюго”; наконец, “72 буквы” был отмечен “Sidewise Award” (за лучшее произведение в альтернативно-историческом жанре)... — согласитесь, такое количество наград кое о чем говорит.
Работает Чан в редком нынче жанре “твердой” научной фантастики. Главное в его рассказах — идея, а сюжет, история той или иной жизни — второстепенны. Зато идеи у него действительно оригинальные. В мирах Чанга может быть все: искусство создания големов изучают в школах, самих големов — используют на промышленных предприятиях; обитатели земли наблюдают Ад буквально у себя под ногами, а также — что опасно для здоровья! — ангелов и Небесный Свет над головой; пришельцы обучают землян не просто своему языку, но принципиально иному способу мышления; строители Вавилонской башни добираются до свода небес и пробивают его...
Увы, иногда изложение той или иной идеи заслоняет сюжет, превращая рассказ в подобие эссе или краткого конспекта романа. Но прочесть эту книгу стоит, таких сегодня почти никто не пишет — а жаль...
Итог: интересный сборник умных, оригинальных рассказов, который наверняка понравится любителям твердой НФ. Увы, переведен не слишком тщательно.
http://www.mirf.ru/Reviews/review124.htm
Тед Чан - Деление на ноль читать онлайн бесплатно
Фабризи кивнул:
— Его последняя статья производит сильное впечатление. Дай мне знать, если он что-нибудь найдет. Любопытство, понимаешь ли.
Сама Рене употребила бы слово посильнее, чем «любопытство».
5b
Не мучится ли Рене из-за работы? Карл знал, что в математике она никогда не видела трудностей, один только интеллектуальный вызов. Может, она впервые столкнулась с проблемой, на которой застряла? Вообще бывает ли в математике такое? Сам Карл был чистым экспериментатором; на деле он даже не знал, как Рене строит свою новую математику. Звучит глупо, но вдруг у нее кончились идеи?
Рене была слишком взрослой, чтобы испытывать страдания, свойственные вундеркинду, когда он вырастает и становится таким же, как все. С другой стороны, многие математики лучшие свои открытия сделали до того, как им исполнилось тридцать, - что если она начинает тревожиться, не приближается ли она, пусть с опозданием на несколько лет, к этому порогу?
Маловероятно. Он бегло рассмотрел несколько других версий. Может, она разочаровалась в академической науке? Ее пугает, что ее исследование стало слишком уж узкоспециальным? Или просто устала от того, что делает?
Карл не верил, что подобные страхи могут быть причиной поведения Рене; он без труда воображал себе впечатления, какие скопились бы у него, будь это так, и воображаемое не укладывалось в реальность. Что бы ни тревожило Рене, он был не в состоянии угадать, и это внушало ему беспокойство.
6
В 1931 году Курт Гёдель доказал две теоремы. Первая, по сути, показывает, что математика содержит утверждения, которые, возможно, истинны, но по природе своей недоказуемы. Даже столь элементарная формальная система, как арифметика, допускает утверждения строгие, осмысленные и кажущиеся истинными, однако эта истинность не может быть доказана формальным путем.
Его вторая теорема показывает, что претензия арифметики на полноту как раз и является таким утверждением: она не может быть доказана никаким методом, опирающимся на аксиомы арифметики. Иными словами, арифметика как формальная система не может гарантировать от таких результатов, как «1 = 2». Предположим, с подобными противоречиями до сих пор никто не сталкивался, но невозможно доказать, что никто никогда с ними так и не столкнется.
6a
И снова он зашел в ее кабинет. Когда Рене подняла на него взгляд, Карл начал решительно:
— Рене, очевидно; что... Она его оборвала:
— Хочешь знать, что меня беспокоит? Ладно, я тебе скажу. — Достав чистый лист бумаги, Рене села за стол. — Подожди, это займет всего минутку.
Карл снова открыл было рот, но Рене махнула ему, чтобы замолчал. Сделав глубокий вдох, она начала писать.
Посередине она провела черту «верху вниз, разделив страницу на две колонки. Вверху первой поставила цифру 1, вверху второй — цифру 2. Ниже стремительно нацарапала какие-то символы, которые в следующих строках развила в серию новых. Она скрежетала зубами, пока писала: было такое ощущение, что, рисуя значки, она ногтями скребет по грифельной доске.
Приблизительно в двух третях от начала страницы Рене стала сводить длинные серии символов ко все более коротким. «А теперь завершающий штрих», — подумала она. Осознала, что слишком давит на бумагу, и ослабила хватку — пальцы уже не так сжимали карандаш. В следующей строке серии стали идентичными. Внизу страницы поверх разделительной черты она с силой вывела знак равенства.
Лист она протянула Карлу.
Он только поглядел на нее, показывая, что не понимает.
— Посмотри наверх. — Он посмотрел. — Теперь посмотри вниз.
Он нахмурился.
— Не понимаю.
— Я открыла формализм, который позволяет приравнять любое число к любому другому числу. На этой странице доказывается, что один равен двум. Выбери любые два числа; я могу доказать, что и они тоже равны.
Карл как будто пытался что-то вспомнить.
— Это ведь деление на ноль, верно?
— Нет. Тут нет никаких запрещенных операций, никаких некорректно заданных условий, никаких независимых аксиом, которые бы подразумевались имплицитно, ничего. В доказательстве не использовано решительно ничего запретного.
Карл покачал головой.
— Подожди-ка. Очевидно, что единица не равна двум.
— Но формально равна — доказательство ты держишь в руке. Все мною использованное — в рамках абсолютно бесспорных утверждений.
— Но ты получила противоречие.
— Вот именно. Арифметика как формальная система является неполной.
6b
— Ты не можешь найти, где ошибка, это ты хочешь сказать?
— Да нет же, ты не слушаешь, Ты думаешь, я мечусь из-за такой малости? В доказательстве ошибки нет.
— Иными словами, ошибка в том, что считается общепринятым?
— Точно.
— Ты... — Он остановился, но слишком поздно. Она поглядела на него враждебно. Ну конечно, она уверена. Он задумался о том, что это подразумевает.
— Теперь понимаешь? — спросила Рене. — Я опровергла большую часть математики. Иными словами, она утратила смысл.
Она становилась все более возбужденной, почти пришла в смятение.
— Как ты можешь такое говорить? — Карл тщательно подбирал слова. — Математика все еще работает. Наука и экономика не рухнут вдруг из-за этого открытия.
— Это потому, что математика, которой они пользуются, всего лишь трюк. Мнемонический костыль, как считать костяшки пальцев, чтобы определить, в каком месяце тридцать один день.
— Но это не одно и то же.
— Почему же? Сейчас математика не имеет к реальности решительно никакого отношения. Куда там такие понятия, как мнимые числа и бесконечно малые величины! Теперь треклятое сложение целых чисел не имеет отношения к счету на пальцах. На пальцах один плюс один всегда выходит два, но на бумаге я могу дать бесконечное число ответов, и все они будут равно действительными и, следовательно, равно недействительными. Я могу написать самую элегантную теорему на свете, а значить она будет не больше, чем какое-нибудь дурацкое уравнение. — У нее вырвался горький смешок. — Позитивисты раньше говорили, что вся математика чистой воды тавтология. Они все напутали: она чистой воды противоречие.
Карл попытался зайти с другой стороны.
— Подожди. Ты только что упомянула мнимые числа. Почему твои выкладки хуже их? Когда-то математики считали, что они не имеют смысла, а сейчас они приняты как азы. Ситуация та же.
— Не та же! Там решение заключалось в расширении контекста, а здесь это ничего не даст. Мнимые числа привнесли в математику нечто новое, а мой формализм пересматривает уже существующее.
(adsbygoogle = window.adsbygoogle || []).push({});Жалоба
Напишите нам, и мы в срочном порядке примем меры.