Сергей Кашин - Сварочные работы. Практический справочник Страница 19

Тут можно читать бесплатно Сергей Кашин - Сварочные работы. Практический справочник. Жанр: Домоводство, Дом и семья / Хобби и ремесла, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Сергей Кашин - Сварочные работы. Практический справочник

Сергей Кашин - Сварочные работы. Практический справочник краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Сергей Кашин - Сварочные работы. Практический справочник» бесплатно полную версию:
Это издание – великолепное практическое руководство как для новичков, так и для опытных мастеров. На его страницах вы найдете пошаговые рекомендации и подробные описания всех этапов данного вида работ, познаете тонкости и нюансы сварного дела.

Сергей Кашин - Сварочные работы. Практический справочник читать онлайн бесплатно

Сергей Кашин - Сварочные работы. Практический справочник - читать книгу онлайн бесплатно, автор Сергей Кашин

3. Относительная продолжительность работы (ПР) и относительная продолжительность включения в прерывистом режиме (ПВ). Источник питания сварочной дуги функционирует в таком режиме, когда включения периодически сменяются выключениями, которые необходимы для удаления шлака со сварного шва, замены электрода и проч. Можно сказать, что данные показатели характеризуют повторно-кратковременный режим работы источника питания сварочной дуги. Разница между ПР и ПВ заключается в том, что при ПР источник питания в момент паузы не отключается от сети и продолжает функционировать в холостом режиме при разомкнутой цепи, а при ПВ источник питания во время паузы отключается от сети.

Величины ПР и ПВ выражаются в процентах и определяют возможную степень эксплуатации источника сварочной дуги:

где tсв – время сварки, т. е. работы под нагрузкой;

tхх – время холостого хода;

tп – время паузы.

Для расчетов условно принимается время сварки (tсв), равное 3 минутам, паузы (tп) – 2 минутам. Подставив значения в формулу, можно установить, что оптимальная величина ПР составляет 60 %. Если ПР равняется 20 %, то время сварки составит 1 минуту, а продолжительность паузы – 4 минуты.

Современная промышленность изготавливает различные источники питания для дуговой сварки и наплавки.

1. Источник питания, работающий от переменного тока и предназначенный для ручной дуговой сварки, автоматической сварки под флюсом и электрошлаковой сварки, называется сварочным трансформатором. Это устройство представляет собой статический электромагнитный аппарат, основная функция которого – преобразование имеющегося в электрической цепи напряжения (220 или 380 В) в более низкое напряжение вторичной электрической цепи, необходимое для возбуждения сварочной дуги и обеспечения ее горения. Энергия в трансформаторе преобразуется за счет переменного магнитного поля и использования необходимого количества витков в первичной и вторичной обмотках, расположенных на магнитопроводе. Так называется сердечник, выполненный из трансформаторной стали (из нее изготавливаются различные электрические изделия, которые в процессе эксплуатации попеременно на– и размагничиваются), которая является тонколистовой, низкоуглеродистой и отличается повышенным содержанием кремния (не более 4 %) и малым количеством вредных примесей – фосфора и серы (не более 0,02 %). Ее магнитопроницаемость определяет и вес устройства. Если магнитные свойства стали максимальны и магнитный поток протекает через нее с наименьшими потерями, то количество стали, необходимое для аппарата, значительно снижается.

В основе действия всех трансформаторов, применяемых для сварочных работ, лежит принцип электромагнитной индукции, т. е. переменный по направлению (с частотой тока) магнитный поток на магнитопроводе, образовавшийся от действия переменного тока первичной обмотки, пересекает витки вторичной обмотки трансформатора, после чего согласно закону электромагнитной индукции возбуждает в ней напряжение (ЭДС). Пока вторичная (сварочная) цепь не будет замкнута, тока в ней (кроме напряжения) не будет.

Сварочный ток регулируется благодаря изменению величины либо индуктивного сопротивления, либо вторичного напряжения холостого хода трансформатора, что осуществляется посредством секционирования числа витков первичной или вторичной обмотки.

Это обеспечивает ступенчатое регулирование тока.

Главный минус всех сварочных трансформаторов – низкий коэффициент мощности cos φ, что объясняется конструкцией трансформатора, в котором падающая вольт-амперная характеристика порождается высокой индуктивностью сварочной цепи.

Для стабильного возбуждения сварочной дуги требуется напряжение холостого хода трансформатора на уровне 65 В, в то время как напряжение сварочной цепи составляет 20–30 В. Вследствие возникшего индуктивного сопротивления потери мощности возрастают. Поэтому коэффициент мощности cos φ сварочных трансформаторов должен составлять 0,4–0,5.

Сварочные трансформаторы на основании различных показателей классифицируются следующим образом:

1) по количеству обслуживаемых рабочих мест на:

✓ однопостовые, рассчитанные на одно рабочее место, поэтому обладают соответствующей вольт-амперной характеристикой;

✓ многопостовые, предназначенные для одновременного обслуживания нескольких рабочих мест. Они имеют жесткую характеристику, но благодаря включению в электрическую цепь дросселя создается падающая внешняя характеристика, обеспечивающая стабильное горение сварочной дуги;

2) по фазности на:

✓ однофазные.

✓ трехфазные.

3) по конструкции на устройства: а) с нормальным магнитным рассеянием и отдельной реактивной (дроссельной) обмоткой, которая последовательно включается в сварочную цепь. Дроссель может заключаться в отдельный корпус или выполняться на общем сердечнике (рис. 32).

Рис. 32 (18). Электрическая схема трансформатора с дросселем: а – в отдельном корпусе; 1 – реактивная катушка; 2 – зазор в регуляторе; б – на общем сердечнике; 1 – реактивная катушка; 2 – зазор в регуляторе

Падающая характеристика и регулировка сварочного тока происходят за счет электродвижущей силы (ЭДС) самоиндукции, которая возникает в обмотке дросселя исключительно при наличии в ней сварочного тока. Составная часть магнитопровода дроссельной катушки – подвижной пакет, который, в свою очередь, является частью магнитопровода дросселя. От величины зазора в магнитном пакете зависит величина магнитного потока в данном магнитопроводе: он тем больше, чем меньше зазор, и наоборот. Величина магнитного потока определяет величину индуктированной ЭДС самоиндукции. Последняя постоянно направлена навстречу движению сварочного тока в цепи, который бывает тем меньше, чем больше ЭДС. Максимальная же величина ЭДС самоиндукции наблюдается при минимальном зазоре в подвижном пакете магнитопровода. Если зазор большой, то магнитный поток и ЭДС будут наименьшими, поэтому сварочный ток будет максимальным, ведь при прохождении по провод нику на его пути нет препятствий.

Благодаря описанным явлениям величина тока плавно регулируется, что и обеспечивает падающую характеристику источника тока и точно настроенный режим сварки.

Подобная схема была распространена приблизительно до 1967 года и хорошо работала, хотя не была лишена недостатков: трансформаторы, например, весили достаточно много, вследствие потерь отмечалось падение КПД, а также увеличивался расход цветных металлов.

Сейчас трансформаторы с дросселем в отдельном корпусе сняты с производства и заменены устройствами в однокорпусном варианте, например трансформаторы типа ТСД и СТН (рис. 33) с аналогичным принципом действия;

б) с развитым магнитным рассеянием. При увеличенных магнитных потоках во вторичной обмотке трансформатора возникает реактивная ЭДС.

Рис. 33. Электрическая схема трансформатора типа СТН: 1 – первичная обмотка; 2 – вторичная обмотка; 3 – обмотка дросселя; 4 – подвижной пакет магнитопровода; 5 – рукоятка; 6 – магнитопровод

Трансформаторы данной группы неоднородны и подразделяются на конструкции:

✓ с магнитными шунтами, например СТАН-0, ОСТА-350 и др. Несмотря на то что они надежны и удобны в применении, они уже не выпускаются, так как весьма неэкономичны (приводят к повышенному расходованию металла и электроэнергии);

✓ с подвижной катушкой (марок ТД, ТДМ и др.) (рис. 34), производство которых поставлено на поток. Они отличаются хорошей динамикой, плавным регулированием и способностью удерживать ток на заданном уровне.

Данные трансформаторы бывают однофазными, стержневого типа, отличаются увеличенной индуктивностью рассеяния.

Рис. 34. Электрическая схема трансформатора с подвижными катушками: 1 – магнитопровод; 2 – вторичная обмотка; 3 – первичная обмотка; 4 – конденсатор

Конструктивно они устроены следующим образом: катушки первичной обмотки зафиксированы, а катушки вторичной обмотки, напротив, являются подвижными. Регулирование сварочного тока осуществляется путем изменения промежутка (для этого предназначается рукоятка) между обмотками: при минимальном расстоянии ток возрастает (рукоятка поворачивается по часовой стрелке), а при максимальном расстоянии он снижается. У трансформатора имеется специальный конденсатор (фильтр), который устраняет радиопомехи, неизбежные при сварочных работах. Сварочный трансформатор типа ТСК-500 показан на рис. 35;

в) с жесткой характеристикой. Такие трансформаторы используются при электрошлаковой сварки (при ней дугового процесса практически нет, а сварка возможна за счет высокой температуры расплавленного шлака, которая доходит до 2000 °C, и прохождения через него тока) и рассчитаны на ток 1000–3000 А.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.