Галина Серикова - Сварочные работы. Практический справочник Страница 4
- Категория: Домоводство, Дом и семья / Сделай сам
- Автор: Галина Серикова
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 35
- Добавлено: 2019-03-07 15:50:41
Галина Серикова - Сварочные работы. Практический справочник краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Галина Серикова - Сварочные работы. Практический справочник» бесплатно полную версию:Сварка находит применение не только в промышленности – она часто используется в быту и малом строительстве. Поэтому представляется важным получить навыки ее выполнения, тем более что эта технология вполне доступна каждому. В этой книге затронуты некоторые теоретические аспекты, но особое внимание уделяется именно вопросам практического овладения сварочными работами.
Галина Серикова - Сварочные работы. Практический справочник читать онлайн бесплатно
По способности растворять водород металлы делятся на две группы:
– металлы, не вступающие в соединения с водородом (железо, никель, медь и др.);
– металлы, образующие при взаимодействии с водородом гидриды (ванадий, титан, редкоземельные элементы и др.).
Присутствующие в металле легирующие элементы по-разному воздействуют на растворимость водорода – могут либо повышать ее, либо понижать. К первым относятся титан и ниобий, а ко вторым – хром, алюминий, а также кремний и углерод.
При охлаждении металла атомарный кислород переходит в молекулярное состояние. Но, если кристаллизация протекает с высокой скоростью, водород не может полностью выделиться из металла, что негативно отражается на качестве шва, металл которого приобретает пористость, становится менее пластичным, усиливается трещинообразование и т. п. Чтобы минимизировать концентрацию водорода в сварочной ванне, вводят элементы, которые вступают в реакцию с ним и образуют нерастворимые соединения (например, фтористый водород), либо применяют окисление сварочной ванны.
Из всего сказанного следует вывод: физико-химические процессы, которые наблюдаются в зоне дуги, существенно влияют на качество металла сварного шва и, следовательно, всего соединения. Поэтому требуется принимать меры, защищающие расплавленный металл сварочной ванны от нежелательного воздействия на него перечисленных газов. Названный способ, предполагающий осуществление сварки в среде защитных газов, а также создание шлаковой оболочки над ванной расплавленного металла, оказывает положительное влияние, но полностью защитить металл от проникновения кислорода и образования в нем соединений с ним это не может. Более эффективным оказывается раскисление металла и извлечение из сварочной ванны оксидов.
В качестве раскислителей металла сварочной ванны используют алюминий, углерод, титан, кремний и марганец, поскольку они имеют значительное сродство к кислороду. Данные элементы вводят в расплавленный металл одним из трех способов – в виде:
– электродной проволоки или присадки;
– флюса;
– электродного покрытия.
Они взаимодействуют с окислами металла. Раскислители вводят в сварочную ванну в виде ферросплавов (ферротитана, ферромарганца и др.), входящих в состав электродного покрытия или флюса. Расплавляясь, они практически целиком переходят в шлак.
Перечисленные выше раскислители ведут себя совершенно по-разному, поэтому одним из них отдают предпочтение чаще, а другие применяют реже. К последним относится алюминий, поскольку он образует тугоплавкие соединения с кислородом, которые придают стали нежелательные качества, в частности склонность к трещинообразованию. Тем не менее при его использовании взаимодействие протекает в соответствии с реакцией:
3FeO + 2Al = 3Fe + Al2O3.
Очень активным раскислителем является титан, поэтому его применяют довольно часто. Он вводится в жидкий металл в составе электродных покрытий и взаимодействует с кислородом согласно реакции:
2FeO + Ti = 2Fe + TiO2.
Кроме того, титан уменьшает содержание азота в расплавленном металле, так как образует нитриды.
Хорошим раскислителем является кремний, который присутствует в электродных покрытиях и флюсах и взаимодействует с кислородом по следующей реакции:
2FeO + Si = 2Fe + SiO2.
Одновременно с этим в жидком металле идет реакция образования силикатов (SiO2 + FeO = FeO SiO2), которые вместе с оксидом двухвалентного железа не растворяются в железе и переходят в шлак.
Раскисление углеродом протекает по реакции:
FeO + C = Fe + CO.
Оксид углерода – это газообразное соединение, в стали оно не растворяется, выделяясь из нее в виде пузырьков. До начала кристаллизации это выглядит как кипение вещества, сопровождающееся разбрызгиванием металла, который при этом очищается от различных металлических включений. Кипение металла во время охлаждения – явление негативное, так как при высокой скорости кристаллизации часть оксида остается в металле шва, образуя поры. Чтобы предотвратить возникновение газовых пор, в сварочную ванну вводят кремний, причем его количество должно быть достаточным для подавления раскисляющего действия углерода.
Самый широко применяемый раскислитель – марганец, входящий в качестве компонента во флюсы и электродные покрытия и действующий по реакции:
FeO + Mn = Fe + MnO.
Как и оксид железа (FeO), оксид марганца вступает во взаимодействие с оксидом кремния, образуя не растворяющийся в стали силикат (MnO + SiO2 = MnO SiO2). Помимо этого, результатом реакции с сульфидом железа (FeS + Mn = MnS + Fe) является сернистый марганец, который, будучи не растворимым в стали, переходит в шлак и освобождает металл от примесей серы (она попадает в сварочную ванну из разных источников – основного металла, сварочной проволоки, флюса и др.).
Виды сварки
Напомним, что получение неразъемного соединения твердых материалов в процессе их местного плавления или пластического деформирования называется сваркой. Металлы и сплавы, как уже было сказано, являются твердыми кристаллическими телами, состоящими из кристаллитов, между которыми существуют межатомные и межмолекулярные силы взаимодействия. При обычных условиях между силами отталкивания и притяжения наблюдается равновесие. Под воздействием энергии, направленной извне (это энергия активации), оно нарушается. В зависимости от того, как именно активируются межатомные связи для формирования неразъемного соединения, сварка подразделяется на:
– сварку плавлением. В соответствии со способом нагрева электросварка плавлением представлена таким видами, как электродуговая, электрошлаковая, электроконтактная, электронно-лучевая. При этом жидкий металл расплавленных кромок перемешивается с образованием общего объема (сварочной ванны), из которого образуется металл шва. Это происходит и в результате использования присадочного металла. Источники локального нагрева бывают различными. Например, это могут быть электрическая дуга, плазма, горелка, энергия электронного или плазменного излучения, печь и др.;
– сварку давлением, при которой сварное соединение образуется благодаря исключительно деформированию свариваемых частей (в некоторых случаях нагрузка может сочетаться с местным нагреванием). Это возможно за счет применения статической или ударной нагрузки, например при сварке взрывом, ультразвуком или в процессе холодной сварки. В ходе пластической деформации на участке свариваемых кромок (он называется зоной соединения) возникает трение, которое способствует формированию межатомных связей между частями.
Для соединения двух металлов в единое целое необходимо, чтобы расстояние между их атомами сократилось настолько, чтобы силы взаимного притяжения начали активизироваться. Это достижимо при условии, что промежуток между атомами составляет 4 х 10-8 см, что возможно, если:
– не нагревая детали, сжать их с приложением больших усилий, что характерно исключительно для пластичных металлов, например для алюминия;
– одновременно нагреть и сжать детали, прикладывая умеренное усилие;
– в зоне соединения нагреть детали до расплавления, не прибегая к сжатию, что и происходит при сварке металлов и сплавов.
В соответствии с этим сварка металлов классифицируется на основе различных признаков:
– физических;
– технических;
– технологических.
В основе классификации по физическим признакам лежит форма энергии, которая применяется для создания сварного соединения. Согласно ГОСТу 19521-74 выделяют 3 класса сварочных процессов:
1. Термический, при котором в зоне сварки под воздействием тепловой энергии рабочие части металла соединяются посредством плавления. Сюда входят следующие разновидности сварки:
а) дуговая. Этот вид сварки классифицируется по различным признакам (Ручная дуговая сварка. М.: Высшая школа, 1981), представленным на рис. 1.
Рис. 1. Классификация дуговой сварки
С применением электродуговой сварки осуществляется примерно 65 % сварочных работ, при которых могут использоваться как плавящиеся (металлические), так и неплавящиеся (угольные) электроды (рис. 2). Первый способ был разработан Н. Г. Славяновым, а второй – Н. Н. Бенардосом.
Рис. 2. Электродуговая сварка: а – плавящимся электродом: 1 – деталь; 2 – сварочная дуга; 3 – зажим; 4 – электрод; 5 – электродержатель; 6 – провод; 7 – кромка; б – неплавящимся электродом: 1 – деталь; 2 – присадочный материал; 3 – электрод; 4 – электродержатель; 5, 6 – провод; 7 – сварочная дугаУчасток на границе расплавленной кромки называется зоной плавления. Ее ширина измеряется микрометрами, но несмотря на такие размеры прочность сварного соединения во многом зависит от нее.
По Славянову, кромки и электрод под воздействием сварочной дуги расплавляются одновременно. Образующаяся при этом сварочная ванна заполняет зазор между соединяемыми деталями, а после кристаллизации превращается в сварной шов. Чтобы улучшить качество наплавляемого металла, на электрод наносится особое покрытие, которое, расплавившись, превращается в слой шлака, покрывающий жидкий металл. В результате этого, во-первых, в шлак переходят вредные примеси, присутствующие в расплавленном металле, а во-вторых, шлак защищает сварочную ванну от проникновения в нее кислорода и азота из атмосферного воздуха.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.