В. Дригалкин - Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности Страница 5

Тут можно читать бесплатно В. Дригалкин - Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности. Жанр: Домоводство, Дом и семья / Сделай сам, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
В. Дригалкин - Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности

В. Дригалкин - Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «В. Дригалкин - Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности» бесплатно полную версию:
Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок.Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы, узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно. Книга также содержит небольшой справочник по радиодеталям, который, возможно, будет интересен и профессионалам.Данный учебник написан доступным и простым языком, без лишней литературной лирики. Чтобы познакомить юных радиолюбителей с электричеством и различными величинами измерения, использован элементарный метод сравнения. Рядом с каждой принципиальной схемой — изображение с внешним видом и цоколевкой (расположение выводов) радиодеталей. Все подробно описано, иногда представлен монтаж того или иного устройства, чтобы визуально можно было увидеть, что же должно получиться.

В. Дригалкин - Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности читать онлайн бесплатно

В. Дригалкин - Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности - читать книгу онлайн бесплатно, автор В. Дригалкин

Измерение постоянного и переменного напряжения

Напряжением в радиотехнике называется разность потенциалов между двумя точками. Иногда применяется термин «падение напряжения». Прибор для измерения напряжения называется вольтметром. Как правило, на тестере режим вольтметра обозначается DCV и ACV, что расшифровывается как постоянное напряжение и переменное напряжение соответственно. Иногда эти режимы обозначаются как V и V~. Вольтметр подключается параллельно измеряемому участку цепи, то есть, если нам надо измерить падение напряжения на резисторе, контакты тестера подключаются к концам этого резистора без разрыва цепи.

Как известно из курса физики, при параллельном соединении проводников напряжение на них одинаково, и показания тестера, который, как мы помним, может измерять только сам себя, будут практически равны напряжению на измеряемом участке цепи. Но необходимые условия выполняются не всегда. Если показания не такие, как ожидалось, вспомните, что сопротивление тестера в режиме вольтметра очень велико и составляет около 10 МОм. Поэтому при измерении напряжения на сопротивлении, сравнимом уже с 1 МОм, тестер будет давать заниженные показания. Но в любительской радиотехнике такие сопротивления встречаются очень редко. Измерение напряжения между двумя несвязанными точками (например, напряжение в бытовой розетке) возможно в том случае, если источник напряжения может выдать ток значительно больший, чем U/10 МОм, где U — измеряемое напряжение. Для большинства источников это выполняется, но, скажем, при создании высоковольтных маломощных источников необходимо помнить об этом.

Есть еще одна проблема, и связана она с измерением переменного напряжения. Диоды, используемые для его выпрямления внутри тестера, имеют значительное падение напряжения и невысокую граничную частоту. Поэтому при измерении переменных напряжений в 1–3 В тестер будет выдавать заниженные показания. Это стоит помнить. Тестер также не умеет измерять высокочастотное напряжение и начинает «врать» (занижать реальные показания) уже с частот в несколько сотен килогерц.

Измерение постоянного тока

Ток есть число электрических зарядов, прошедших через проводник в единицу времени. Для того чтобы через тестер прошло такое же количество зарядов, как и через измеряемый проводник, авометр нужно включить последовательно с ним, то есть в разрыв электрической цепи. Как правило, для измерения больших токов у тестеров есть отдельный вход. Режим измерения постоянных токов обозначается, как правило, буквами DCA. Режим измерения больших токов обозначается как 10 А или 20 А. Здесь уместно напомнить, что хотя тестер используется для измерения токов в 10–20 А, подводящие провода для этого никак не предназначены и начинают греться и плавиться уже при токах в 4–5 А.

Переменный ток тестером измерить нельзя. В принципе, со значительной ошибкой это сделать можно, включив в разрыв измеряемого проводника резистор и измерив переменное напряжение на нем. Искомый ток находится по формуле:

I = U/R,

где U - переменное напряжение, a R - сопротивление резистора, на котором это напряжение измерено. Этим методом измеряют только очень большие или очень маленькие токи. Причем в любом случае резистор надо стараться брать как можно меньшим, в случае больших токов — доли ома.

Измерение сопротивления

Омметр (измеритель сопротивления) обозначается греческой буквой омега W. Сопротивление измеряется при отсутствии какого-либо тока через резистор. В работающей схеме сопротивление измерять нельзя, так как параллельно измеряемому резистору будет включена вся остальная схема, сопротивление которой неизвестно, и показания омметра будут абсолютно неверными.

Помните, что нелинейные элементы (диоды, светодиоды, транзисторы, тиристоры и др.) обладают лишь дифференциальным сопротивлением, то есть сопротивлением, зависящим от приложенного напряжения. Дифференциальное напряжение напрямую тестером измерить нельзя. Косвенно его можно измерить, строя вольт-амперную характеристику элемента, но это требует создания небольшой дополнительной схемы.

Про реактивные элементы (конденсаторы, катушки) будет рассказано далее.

Прозвонка диодов

Режим прозвонки диодов обозначается, как правило, значком диода. Подключение его аналогично подключению омметра с теми же оговорками (не измерять в схеме и др.). Измерение производится в два этапа: сначала красный провод тестера подключить к аноду, затем — к катоду. В первом случае на экране должно отобразиться некоторое число, показывающее падение напряжения на диоде в милливольтах. Во втором — бесконечность (единичка в младшем разряде).

В режиме прозвонки диодов также можно определить распиновку биполярных транзисторов и их структуру. Делается это по следующему алгоритму:

1) Выбираем любой контакт транзистора и подсоединяем к нему красный провод тестера.

2) Пробуем другим контактом подсоединиться сначала к одному, а потом к другому контакту. Если в обоих случаях мы увидели какие-то цифры (они будут отличаться на 6–7 единиц, запомните их), то транзистор имеет структуру n-p-n, а контакт, к которому присоединен красный провод, — база. Коллектор — это тот контакт, при присоединении к которому черного провода число на экране было меньше. Оставшийся контакт соответственно эмиттер.

3) Если такой комбинации найти не удалось, повторяем алгоритм сначала, только поменяв провода местами (то есть ищем комбинацию, когда к одному из контактов подсоединен черный провод, а при касании красным других контактов появляются цифры на экране). Тогда транзистор — структуры n-p-n, а контакты определяются так же, как во втором пункте.

Измерение и проверка емкостей и индуктивностей

Если ваш тестер имеет специальные режимы для проверки емкости и индуктивности (обозначаются как С и L соответственно), пользоваться им нужно так же, как омметром (с теми же оговорками). Если у тестера нет таких режимов, можно просто проверить на работоспособность эти элементы с помощью омметра. Сопротивление катушки должно быть конечным и близким к нулю (иногда оно может составлять несколько кОм). Иногда на катушках с высокой индуктивностью цифры начинаются с больших значений и быстро уменьшаются. Так и должно быть. Конденсатор должен обладать бесконечным или очень большим (несколько мегаом) сопротивлением. Для больших конденсаторов можно приближенно определить их емкость. При подключении омметра (настроив его на максимально возможный предел для измерения сопротивлений порядка мегаома) к выводам конденсатора цифры начинают увеличиваться, постепенно приближаясь к бесконечности. Для больших емкостей (тысячи микрофарад) цифры увеличиваются очень медленно.

Пугаться этого не стоит. Емкость приблизительно будет равна

С = 1/t х R,

где t — время, за которое значения на экране выросли в е раз (е = 2.7), а R — входное сопротивление тестера (примем равным 10 МОм, но желательно откалибровать ее по конденсатору известной емкости).

Естественно, конденсатор нужно подключать в соответствии с полярностью: красный провод к положительной обкладке, черный — к отрицательной. Для неэлектролитических конденсаторов это не важно. При измерении емкости таким способом нельзя прикасаться руками к обоим выводам — сопротивление человеческого тела составляет иногда даже меньше мегаома.

Разное

Сразу хочу отметить — светодиоды тестером не проверяют. Падение их напряжения, как правило, больше того, что может измерить тестер. Очень яркие светодиоды можно спалить, так как в авометре нет ограничителя тока. Я бы не советовал измерять их тестером, но если вы все-таки решитесь можно заодно определить и выводы: если светодиод горит, значит, красный провод подключен к аноду.

Полевые транзисторы можно проверить на работоспособность — затвор должен быть изолирован от остальных контактов. Естественно, антистатический браслет не помешает, так как статическое электричество человека может вывести полевой транзистор из строя. Это касается и некоторых других деталей, например, микросхем, которые содержат в себе огромное количество разнообразных компонентов, в том числе и полевые транзисторы.

Электронные лампы можно проверить на предмет обрыва накала. У рабочей лампы сопротивление холодной накальной цепи составляет от сотен ом до долей ома, причем чем мощнее лампа, тем меньше сопротивление.

Микросхемы проверить можно только в схеме. Тестер тут не поможет.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.