Яков Перельман - Загадки и диковинки в мире чисел Страница 17

Тут можно читать бесплатно Яков Перельман - Загадки и диковинки в мире чисел. Жанр: Домоводство, Дом и семья / Развлечения, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Яков Перельман - Загадки и диковинки в мире чисел

Яков Перельман - Загадки и диковинки в мире чисел краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Яков Перельман - Загадки и диковинки в мире чисел» бесплатно полную версию:
Занимательные рассказы о числах-великанах и числах – карликах, о системах счисления, об арифметических парадоксах и головоломках разнообразят школьную программу и сделают интересным ваш досуг.

Яков Перельман - Загадки и диковинки в мире чисел читать онлайн бесплатно

Яков Перельман - Загадки и диковинки в мире чисел - читать книгу онлайн бесплатно, автор Яков Перельман

«Сколько мне недель?»

Чтобы научиться по числу лет быстро определять число заключающихся в них недель, нужно только уметь ускоренно множить на 52, т. е. на число недель в году.

Пусть дано перемножить 36 × 52. «Счетчик» сразу же, без заминки, говорит вам результат: 1872. Как он его получил? Довольно просто: 52 состоит из 50 и 2; 36 умножается на 5 через деление пополам; получается 18 – это две первые цифры результата; далее умножение 36 на 2 делается как обыкновенно; получают 72, которые и приписываются к прежним 18: 1872.

Легко понять, почему это так. Умножить на 52 значит умножить на 50 и 2; но, вместо того, чтобы умножить на 50, можно половину умножить на 100 – отсюда понятно деление пополам; умножение же на 100 достигается припиской 72 (36 × 2), отчего каждая цифра увеличивается в 100 раз (передвигается на два разряда влево).

Теперь понятно, почему «гениальный» счетчик так быстро отвечает на вопрос: «Мне столько-то лет; сколько мне недель?» Умножив число лет на 52, ему остается только прибавить еще к произведению седьмую часть числа лет, потому что в году 365 дней, т. е. 52 недели и 1 день: каждые 7 лет из этих избыточных дней накопляется лишняя неделя [31] .

«Сколько мне дней?»

Если спрашивают не о числе недель, а о числе дней, то прибегают к такому приему: половину числа лет множат на 73 и приписывают нуль – результат и будет искомым числом (эта формула станет понятна, если заметить, что 730 = 365 × 2). Если мне 24 года, то число дней получим, умножив 12 × 73 = 876 и приписав нуль – 8760. Само умножение на 73 также производится сокращенным образом, о чем речь впереди (стр. 131).

Поправка в несколько дней, происходящая от високосных лет, обыкновенно в расчет не принимается, хотя ее легко ввести, прибавив к результату четверть числа лет (в нашем примере 24:4 = 6; общий результат, следовательно, 8766).

«Сколько мне секунд?»

На этот вопрос [32] также можно довольно быстро ответить, пользуясь следующим приемом: половину числа лет умножают на 63; затем ту же половину множат на 72, результат ставят рядом с первым и приписывают три нуля. Если, например, число лет 24, то для определения числа секунд поступают так:

63 × 12 = 756; 72 × 12 = 864; результат: 756864000.

Указанными ниже приемами ускоренного умножения эти операции облегчаются до чрезвычайности, и миллионный результат получается очень быстро. Советую читателю попробовать произвести то же вычисление и обыкновенным путем, чтобы на деле убедиться, какая экономия во времени получается при пользовании указанной формулой и нижеприведенными приемами.

Как и в предыдущем примере, здесь не приняты в расчет високосные годы – ошибка, которой никто не поставит вычислителю в упрек, когда приходится иметь дело с сотнями миллионов.

Что касается правильности нашей формулы, то она выясняется очень просто. Чтобы определить число секунд, заключающихся в данном числе лет, нужно лета (в нашем примере 24) умножить на число секунд в году, т. е. на 365 × 24 × 60 × 60 = 31536000. Мы делаем то же самое, но только большой множитель 31536 разбиваем на два (приписка трех нулей сама собой понятна). Вместо того, чтобы умножать 24 × 31536, умножают 24 на 31500 и на 36, но и эти действия мы для удобства вычислений заменяем другими, как это видно из следующей схемы:

Теперь остается лишь приписать три нуля – и мы имеем искомый результат: 756864000.

Приемы ускоренного умножения

Мы упоминали раньше, что для выполнения тех отдельных действий умножения, на которые распадается каждый из указанных выше приемов, существуют также удобные способы. Некоторые из них весьма не сложны и удобоприменимы; они настолько облегчают вычисления, что мы советуем читателю вообще запомнить их, чтобы пользоваться при обычных расчетах. Таков, например, прием перекрестного умножения, весьма удобный при умножении двузначных чисел. Способ этот восходит к грекам и индусам и в старину назывался «способом молнии» или «умножением крестиком».

Пусть дано перемножить 24 × 32, мысленно располагаем числа по следующей схеме, одно под другим:

Теперь последовательно производим следующие действия:

1) 4 × 2 = 8 – это последняя цифра результата.

2) 2 × 2 = 4; 4 × 3 = 12; 4 + 12 = 16; 6 – предпоследняя цифра результата; 1 запоминаем.

3) 2 × 3 = 6, да еще оставшаяся единица, имеем 7 – это первая цифра результата.

Известны все цифры произведения: 7, 6, 8 – 768.

После непродолжительного упражнения прием этот усваивается очень легко.

Другой способ, состоящий в употреблении так называемых дополнений, удобно применяется в тех случаях, когда перемножаемые числа близки к 100.

Предположим, что требуется перемножить 92 × 96. «Дополнение» для 92 до 100 будет 8, для 96 – 4. Действие производят по следующей схеме:

множители: 92 и 96 «дополнения»: 8 и 4

Первые две цифры результата получают простым вычитанием из множителя «дополнения» множимого или наоборот; т. е. из 92 вычитают 4 или из 96 – 8. В том и другом случае имеют 88; к этому числу приписывают произведение «дополнений» 8 × 4 = 32. Получают результат 8832.

Что полученный результат верен, наглядно видно из следующих преобразований:

Существует прием и для ускоренного умножения трехзначных чисел; он также сберегает много времени, но применение его сложнее и требует некоторого умственного напряжения, так как приходится одновременно держать в уме несколько цифр.

Какой день недели?

Умение быстро определять день недели, на какой приходится та или иная дата (например, 17 января 1893 г., 4 сентября 1943 г. и т. п.) основано на поучительном разборе особенностей нашего календаря, который мы сейчас и проделаем.

Первое января 1-го года нашей эры приходилось (как установлено расчетом) на субботу. Так как в каждом простом году 365 дней, или 52 полных недели и 1 день, то год должен кончаться тем же днем недели, каким начался; поэтому последующий год начинается одним днем недели позже, чем предыдущий. Если 1 января 1-го года была суббота, то 1 января 2-го года было днем позже, т. е. воскресенье, 3-го года – на 2 дня позже; а 1 января, например, 1923 года было бы на 1922 дня (1923 – 1) после субботы, – если бы не было ни одного високосного года. Число високосных лет мы найдем, разделив 1923 на 4 = 480; но отсюда, для нового стиля, надо исключить календарную разницу в 13 дней: 480 – 13 = 467. К полученному числу надо прибавить число дней, протекших после 1 января 1923 года до определяемой даты, – скажем для примера, до 14 декабря: это составит 347 дней. Сложив 1922, 467 и 347, мы делим сумму на 7 и по полученному остатку 6 определяем, что 14 декабря 1923 года приходится на 6 дней после субботы, т. е. в пятницу.

Такова общая схема вычислений недельного дня любой даты. На практике дело значительно упрощается. Прежде всего заметим, что в течение каждого 28-летнего периода бывает, вообще говоря, 7 високосных лет (неделя), – так что каждые 28 лет день недели любой даты должен повторяться. Кроме того, вспомним, что мы в предыдущем примере вычли из 1923 сначала 1, а затем календарную разницу обоих стилей, т. е. 13, всего 1 + 13 = 14 дней, или две полных недели. Но полное число недель, понятно, не влияет на результат. Поэтому для дат XX века надо принимать во внимание только: 1) число дней, протекших с 1 января данного года – в нашем примере 347; затем 2) прибавить число дней, соответствующее остатку лет от деления 1923 на 28, и наконец, 3) число високосных лет в этом остатке, т. е. 4. Сумма этих трех чисел (347 + 19 + 4), т. е. 370, дает при делении на 7 тот же остаток 6 (пятница), который был получен нами раньше.

Таким же образом мы найдем, что 15 января 1923 г. приходится на понедельник (14+19 + 4 = 37;37:7 – в остатке 2). Для 9 февраля нового стиля 1917 г. мы нашли бы 39 + 13 + 3 = 55; при делении 55 на 7 получаем в остатке 6 – пятница. Для 29 февраля нового стиля 1904 г.: 59 + 0–1 [33] = 58; остаток от деления на 7 здесь 2 – понедельник.

Дальнейшее упрощение состоит в том, что вместо полного числа дней месяца (при исчислении числа дней, протекших после 1 января заданного года), принимают в расчет только его остаток от деления на 7. Далее, разделив 1900 на 28, получаем в остатке 24 года, в которых содержится 5 високосных лет; прибавив их к 24 и найдя, что сумма 24 + 5, т. е. 29, дает при делении на 7 остаток 1, определяем, что 1 января 1900 года было в 1-й день недели. Отсюда для первых чисел каждого месяца получаем следующие числа, определяющие соответствующие им дни недели (мы будем их называть «остаточными числами»).

Остаточные числа для:

Запомнить эти числа нетрудно; кроме того, их можно нанести на циферблат карманных часов, поставив возле каждой цифры циферблата соответствующее числи точек [34] .

Сделаем теперь расчет дня недели, например, для 31 марта 1923 г.

Остаток от деления на 7. . 0 – суббота.

Найти день недели 16 апреля 1948 г.

Остаток от деления на 7. . 6 – пятница.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.