Неизвестен Автор - Мозг (сборник) Страница 32
- Категория: Домоводство, Дом и семья / Здоровье
- Автор: неизвестен Автор
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 65
- Добавлено: 2019-03-04 16:06:31
Неизвестен Автор - Мозг (сборник) краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Неизвестен Автор - Мозг (сборник)» бесплатно полную версию:Неизвестен Автор - Мозг (сборник) читать онлайн бесплатно
Результат этот частично вызван сжатием глазо-доминантных полосок "выключенного" глаза, сопровождающимся вторичным расширением полосок нормального глаза, и отчасти - сохранением неплотной группировки волокон из нормального глаза, имевшей место на более ранней стадии. Если исследовать входы от обоих глаз на различных стадиях развития, можно показать, что когда волокна из латерального коленчатого тела только достигают зрительной коры, входы обоих глаз существенно перекрываются в зоне проекции. Лишь к концу первого месяца жизни животного полоски четко разделяются. В свете этого факта (и результатов экспериментов, в которых затем закрывали другой глаз, и открывали первый) представляется вероятным, что эффект зрительной депривации состоит в том, чтобы привести геникуло-кортикальные клетки, связанные с нестимулируемым глазом, в некоторое для них невыгодное положение, в котором они проявляют недостаточную эффективность в конкуренции за синаптические участки на клетках в четвертом слое зрительной коры.
В соответствующем слое соматосенсорной коры мыши клетки организованы в четкие группы, названные бочонками. Физиологические исследования показывают, что каждый бочонок имеет вход от одной вибриссы с контралатеральной стороны мышиной мордочки. Заметим, что у мыши вибриссы являются одним из наиболее важных органов чувств. Т. Вулси (Th. Woolsey) из Медицинской школы Вашингтонского университета, первым открывший значение бочонков, обнаружил, что если удалить небольшую группу вибрисс сразу после рождения, то соответствующая группа бочонков в коре не разовьется. Этот факт особенно интересен потому, что между сенсорными нейронами, связанными с вибриссами, и нейронами, образующими кортикальные бочонки, лежат по крайней мере еще две группы вставочных нейронов.
Эти и многие другие наблюдения приводят к выводу, что развивающийся мозг является исключительно пластичной структурой. Хотя многие области могут быть "жестко запаяны", другие (такие, как зрительная кора) открыты для различных воздействий - как внутренних, так и внешних. Способность мозга к реорганизации в ответ на внешние воздействия или на локальное повреждение в настоящее время является наиболее активно изучаемым явлением нейробиологии не только потому, что очевидна его связь с такими феноменами, как обучение и память, и его отношение к способности мозга восстанавливаться после повреждения, но и потому, что они открывают тайны нормального развития мозга.
В заключение хочется подчеркнуть, что развитие мозга, как и развитие большинства других биологических структур, не обходится без ошибок. Ранее уже было упомянуто, что ошибки могут происходить во время миграции нейронов. Известны такие примеры возникновения ошибок во время формирования связей. В зрительной системе, как было замечено рядом исследователей, некоторые волокна зрительного нерва, которые должны были бы пересечь среднюю линию в составе перекреста, начинают в результате ошибки расти к ипсилатеральной стороне мозга. В некоторых таких ситуациях, если у животного на ранней стадии развития удалить один глаз, то число волокон, отклонившихся от правильного направления, может значительно возрасти. Поскольку аномально ориентированные волокна часто не обнаруживаются в зрелом мозгу, создается впечатление, что такие неправильно адресованные нейроны (и любые ими сформированные ошибочные связи) ликвидируются на более поздних стадиях развития. Остается загадкой, как выясняется, что они ошибочные, и каким образом они устраняются. Учитывая сложность механизмов развития, не приходится удивляться тому, что ошибки появляются. Удивительнее то, что они появляются редко и что чаще всего они эффективно исправляются.
Л. ИВЕРСЕН
Химия мозга
Сигналы передаются от нейрона к нейрону разными химическими медиаторами. Эти химические системы, наложенные на нейронные цепи головного мозга, добавляют к его функции еще одно измерение
Нейроны имеют биохимический аппарат, общий со всеми остальными живыми клетками, в том числе способность генерировать химическую энергию путем окисления пищевых веществ, а также восстанавливать и сохранять свою целостность. Нейроны обладают, кроме того, специфическими свойствами, которых лишены другие клетки и которые связаны с особой функцией нейронов как передатчиков нервных импульсов; сюда относятся необходимость в поддержании ионных градиентов, что требует большой затраты энергии, и свойства, связанные со способностью нейронов производить и выделять набор химических передатчиков, называемых нейромедиаторами. В синапсах микроскопических участках, где тесно соприкасаются окончание одного нейрона и воспринимающая поверхность другого, приход импульса вызывает внезапное выделение молекул медиатора из, окончания. Затем эти молекулы диффундируют через заполненную жидкостью щель между двумя клетками и воздействуют на специфические рецепторы постсинаптической мембраны, изменяя при этом электрическую активность воспринимающего нейрона.
Нейроны, содержащие норадреналин - химический медиатор в головном мозгу, - ярко светятся на этом срезе мозга крысы под флуоресцентным микроскопом. Такие клетки, расположенные в участке мозга, именуемом locus coeruleus, стали видны под воздействием глиоксиловой кислоты, которая превращает норадреналин в его флуоресцирующее производное. В этом поле находятся еще тысячи других нейронов, но в них содержатся другие медиаторы и поэтому они не видны. Норадреналиновые нейроны в locus coeruleus посылают свои аксоны во многие отделы мозга, в том числе в мозжечок и передний мозг. Как полагают, они имеют отношение к регуляции сна, настроения, а также к системе поощрения. Микрофотография получена Ф. Блумом (F. Bloom), Г. Джонсом (G. Jones) и Ж. Мак-Джинти (J. McGinty) из Института Солка.
Химическая передача через синапс - узкую щель между двумя нейронами - в головном мозгу состоит из сложной последовательности молекулярных процессов. На рисунке дана схема процесса передачи в норадреналиновом синапсе. Сначала в три стадии происходит синтез норадреналина из аминокислоты тирозина, причем каждая стадия катализируется особым ферментом. Затем медиатор в сочетании с белками накапливается в пузырьках, примыкающих к мембране. Приходящий в аксонное окончание нервный импульс запускает приток ионов кальция, который вызывает высвобождение норадреналина из пузырьков в синаптическую щель. Молекулы медиатора связываются со специфическими рецепторными белками, включенными в постсинаптическую мембрану, запуская серию реакций, которая заканчивается кратковременными (электрическими) и долговременными воздействиями на воспринимающий нейрон. После этого действие норадреналина прекращается различными способами, в том числе быстрым возвращением медиатора в аксонное окончание и разрушением его ферментами. Выход некоторого количества норадреналина в синаптическую щель активирует пресинаптические рецепторы на аксонном окончании, вызывая выработку циклического АМФ, который активирует белковую киназу, стимулируя тем самым новую выработку норадреналина.
Известно около 30 разных веществ, относительно которых доказано или подозревается, что они играют роль медиаторов в головном мозгу, и каждое из них оказывает на нейроны характерный возбуждающий или тормозный эффект. Медиаторы распределены в мозгу не в случайном порядке, а локализованы в особых группах нейронов, аксоны которых идут к другим высокоспециализированным областям мозга. Наложение этих разнообразных химически закодированных систем на нейронные сети наделяет головной мозг еще одним измерением модуляции и специфичности.
За последние годы достигнуты значительные успехи в изучении различных медиаторных веществ (хотя многие из них, несомненно, еще не открыты), в составлении карт их распределения по мозгу и в выяснении молекулярных процессов синаптической передачи. Такими исследованиями установлено, что действие многих лекарственных веществ и нейротоксинов на поведение основано на их способности прерывать или модифицировать химическую передачу от нейрона к нейрону. В них есть также указания на то, что причинами психических болезней, возможно, окажутся в конечном счете нарушения функции специфических медиаторных систем мозга.
Что касается общего энергетического обмена, то из всех органов тела головной мозг является самым активным потребителем энергии, что отражается в его обильном кровоснабжении и интенсивном потреблении кислорода. Мозг настолько интенсивно использует кислород (50 миллилитров в минуту), что, составляя всего 2% общего веса тела, поглощает примерно 20% поступающего в организм кислорода.Такое огромное потребление энергии, как полагают, объясняется необходимостью поддерживать ионные градиенты по обе стороны нейронной мембраны, от чего зависит проведение импульсов в миллиардах нейронов мозга. Кроме того, это потребление энергии идет непрерывно: интенсивность метаболизма в мозгу относительно постоянна днем и ночью и иногда даже несколько возрастает во время фазы сна со сновидениями. Однако, чтобы не создалось ошибочного представления, следует сказать, что весь энергетический эквивалент метаболизма мозга составляет всего около 20 ватт.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.