Павел Власов - Беседы о рентгеновских лучах Страница 16
- Категория: Домоводство, Дом и семья / Прочее домоводство
- Автор: Павел Власов
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 49
- Добавлено: 2019-03-06 18:46:58
Павел Власов - Беседы о рентгеновских лучах краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Павел Власов - Беседы о рентгеновских лучах» бесплатно полную версию:Власов П. В. В58 Беседы о рентгеновских лучах. 2-е изд., М., "Молодая гвардия",1979. 222 с. с ил, (Эврика). В пер.: 60 к. 100000 экз. Казалось бы, рентгеновские лучи изучены и описаны столь полно, что очем-то новом, интересном, тем более загадочном тут не может быть и речи.Но, как ни странно, они все еще остаются таинственными невидимками, хотяисследуются с 1885 года. В мире звезд и атомов, клеток и организмов -всюду есть место поискам, призванным решить вопросы, а то и головоломныеуравнения со многими неизвестными, относящимися к рентгеновской радиации.Таков лейтмотив книги доктора медицинских наук П. Власова. 70302 - 017 078(02)-79 78-79- 4 111 000 000 535 ИБ N 1481 Павел Васильевич Власов БЕСЕДЫ О РЕНТГЕНОВСКИХ ЛУЧАХ Заведующий редакцией "Эврика" Н. Лазарев Редактор Л. Антонюк Младший редактор Л. Дорогова Художник Ю. Аратовский Художественный редактор В. Неволин Технический редактор Г. Прохорова Корректоры А. Долидзе, Е. Самолетова Подписано к печати с матриц 09.01.79. А02003. Формат 84Х108 1/32. Бумага типографская № 1. Гарнитура "Литературная". Печать высокая.Условн. печ. л. 11,76. Уч.-изд. л. 12,3. Тираж 100 000 экз. Цена 60 коп.Т. П. 1979 г., № 78. Заказ 28. Типография ордена Трудового Красного Знамени издательства ЦК ВЛКСМ"Молодая гвардия". Адрес издательства и типографии: 103030, Москва, К-30,Сущевская, 21.
Павел Власов - Беседы о рентгеновских лучах читать онлайн бесплатно
Открытие братьев И. и Б. Курчатовых, Л. Мысовского и Л. Русинова стало в один ряд с открытиями Э. Резерфорда, П. Вилларда и супругов Ф. и И. ЖолиоКюри. Но признано оно было не сразу. "Трудно поверить в существование изомерных, атомных ядер, то есть таких, которые при равном атомном номере обладают различными радиоактивными свойствами. Мы надеемся после проведения экспериментов узнать, стоит ли Заниматься вопросом об изомерных ядрах" - так на физическом съезде в Цюрихе в 1936 году заявила Л. Мейтнер, которая вскоре открыла деление урановых ядер.
Справедливости ради надо сказать, что Л. Мейтнер тогда же добавила: "Предположение о существовании изомерных ядер дало бы возможность объяснить искусственные превращения урана".
В 1938 году ядерную изомерию обнаружили Н.Ферев и Э. Бретчер (Англия). Повторно и попозже. Тем не менее в 1963 Году один канадский научный журнал, посвященный проблемам ядерной энергии, поместил таблицу видов радиоактивности, где в качестве первооткрывателей фигурировали... британские специалисты, а не советские. Неосведомленность?
Но не ради этого затеян разговор о ядерной изомерии. Ее механизм поможет нам понять, как атом превращается в рентгеновскую трубку микроскопических размеров.
Выше говорилось, что рентгеновской и гамма-радиации принадлежат соседние области на непрерывном спектре, причем одна незаметно переходит в другую.
Там же поднимался бессмертный вопрос, детски наивный и философски мудрый: где начало того конца, которым оканчивается начало? Теперь, познакомившись с ядерной изомерией, мы, возможно, сумеем пусть не распутать, а хотя бы разрубить этот гордиев узел.
Гамма-излучение может быть мягче рентгеновского.
И наоборот: рентгеновское - жестче гамма-излучения.
Притом различить их физически невозможно! Почему же тогда оба они называются по-разному? Может, просто потому, что одно было открыто раньше другого, а когда установили их тождество, традиция увековечила терминологическую путаницу? Попробуем разобраться.
Вскоре после того, как Э. Резерфорд "разделил неделимый", а затем подготовил его "архитектурный проект" в виде планетарной модели, стало постепенно выясняться, что в атоме сосуществуют как бы два микромира. Во-первых, центральное ядро. Во-вторых, периферийные (орбитальные) электроны. С первым начали связывать гамма-радиацию, со вторыми рентгеновскую. И тут есть своя логика.
Вспомним, что значит один элемент превращается в другой. По сути, вот что: из одного ядра возникает другое. При этом второе, "дочернее", может образоваться в возбужденном состоянии, которое неустойчиво. Чтобы обрести стабильность, "дочь" испускает гамма-кванты, после чего "успокаивается". Такие переходы обычно мгновенны, отнимают что-то около 1/12 секунды. Но длительность их резко возрастает с уменьшением энергии переходов (а стало быть, и жесткости гамма-квантов). В некоторых случаях процесс завершается через часы, дни, месяцы, годы, десятилетия.
Иначе говоря, из одинаковых ядер иные могут существовать в основном, иные - в возбужденном состоянии. Вот их-то и называют изомерами (от греческого "изос" - "равный" и "мерос" - "доля"). И тут начинается самое интересное.
Оказывается, у многих из них переход к устойчивости не сопровождается столь заметным внешне эффектом, как "пушечный залп" гамма-квантами, покидающими атом. Возбужденное ядро может избавиться от избыточной энергии иначе, на внутриатомном уровне.
Передать ее своим же спутникам-электронам. Те, в свою очередь, переходят в неустойчивое состояние, возбуждаются. И один из них вылетает вон из атома.
Это так называемая внутренняя конверсия (от латинского "изменение", "преобразование"). Нас интересует не сама она, а ее следствие: вместо гамма-излучения (первичного, ядерного) наблюдается рентгеновское (вторичное, орбитальное). Как же оно рождается?
Когда один из электронов покидает их компанию навсегда, на освободившееся место тотчас перескакивает другой. Возможна и последующая "перетасовка", поскольку заполнение одной вакансии влечет за собой появление другой. А каждый прыжок с орбиты на орбиту сверху вниз сопровождается испусканием кванта энергии, который тем мощнее (жестче), чем значительней разница между верхним и нижним уровнями. Но в любом случае эта вторичная радиация мягче первичной, не состоявшейся. Она может быть видимой, световой, и незримой, рентгеновской.
Так генерируют ее и радиоизотопы, которые вкраплены в любую горную породу... - в Антарктиде ли, в Сахаре или Сибири. Для этого им не нужна высокая температура, не требуется тепло, подводимое извне. Напротив, они сами нагревают земную кору и лежащую под ней мантию, выделяя энергию в процессе распада.
А в недрах Солнца, которые раскалены до многих миллионов градусов? Там, как мы знаем, доминирует именно рентгеновская радиация. Порождается они опять-таки электронами, но свободными, оторванными от своего атома, ставшего ионом. При той несусветной жаре они наделены огромной энергией. Ошибаясь, тормозясь, они теряют ее, испуская жесткие кванты. Возможны, конечно, и другие механизмы. Например, ион, сталкиваясь со сверхскоростными частицами, возбуждается и, переходя в более спокойное состояние, выбрасывает избыток энергии сгустками - рентгеновскими квантами. Он действует как пулемет: подзарядка, стрельба. И так далее.
Нечто подобное происходит с плазмой и на Земле, при ядерных взрывах например.
Электроны работают и в рентгеновской трубке. Разогнанные внешним электрическим полем, они с силой ударяются в антикатод. Замедляясь в плотной среде металла, то есть опять-таки теряя энергию, они высвобождают ее в виде жестких квантов. Тормозом служит внутреннее электрическое поле, создаваемое ядра"- ми бомбардируемого вещества. Пролетая поблизости от них, быстрые заряженные частицы вынуждены преодолевать это препятствие, на что и расходуют свои силы.
Наконец, в ускорителе электронов они излучают в том же диапазоне при взаимодействии с магнитным полем (синхротронный эффект).
Итак, куда ни посмотришь, первоисточники икслучей - не что иное, как электроны, самые многочисленные и самые миниатюрные рентгеновские трубки, сконструированные самой природой, действующие как внутри атома, так и вне его.
А как с гамма-радиацией? Когда разобрались, что к чему, ей стали приписывать особое происхождение.
Какое же еще? Конечно, ядерное! Но со временем восклицательный знак сменился вопросительным.
Обнаружилось, что и гамма-излучение может быть тормозным, то есть не ядерным, а электронным по своей природе. Оно рождается, например, когда заряженные частицы, разогнанные ускорителем, бьют в мишень и как бы "вязнут" в ней. Оно же может возникнуть, когда сверхбыстрые электроны сталкиваются со своими двойниками-антиподами - позитронами. Когда частица соударяется с античастицей, обе они способны аннигилировать, как бы исчезнуть, оставив вместо себя сгусток энергии - гамма-квант. Полагают, такое нередко случается в просторах вселенной. Не исключено, что именно этим обусловлена гамма-радиация, которая идет от всего космического океана равномерно (диффузный фон). Она же регистрируется при распаде некоторых элементарных частиц, к примеру, нейтральных пи-мезонов.
Мало того, она может возникать из... рентгеновской.
И еще более мягкой - ультрафиолетовой, даже видимой. Сталкиваясь со сверхбыстрыми электронами, ускоренными магнитным полем межзвездного пространства, и отбирая у них энергию, кванты становятся намного более мощными, жесткими. Так обычный свет превращается в гамма-лучи.
Словом, гамма-лучи отнюдь не всегда связаны с ядром генетически. Если же они так похожи на рентгеновские, то почему те и другие столь четко отграничиваются нами на непрерывном спектре? Почему увековечено их различие вместе с традиционными обозначениями - буквами "икс" и "гамма"?
Так снова возникает старый, но не стареющий вопрос: где начало того конца, которым оканчивается начало? Как тут не вспомнить легенду о гордиевом узле, который не могли распутать, несмотря на все старания. Что делать? Разрубить его мечом - такое решение, ничтоже сумняшеся, принял и осуществил Александр Македонский. Рассечь же непрерывный спектр на рентгеновскую и гамма-область со всей определенностью значило бы уподобиться великому полководцу, блистательно продемонстрировавшему примитивный подход к непростой задаче.
12.
- Вопросов о "начале того конца..." можно напридумывать сколько угодно. Например: где пределы всех диапазонов невидимого излучения, начиная с ультрафиолетового и кончая областью самой жесткой гаммарадиации? Где ее самая дальняя граница, что потом?
И т. д., и т. п.
- Браво, прекрасная мысль! Особенно "и т. д., и т. п.". Почему бы и впрямь не продолжить, скажем, так: а нельзя ли преобразовать одно излучение в любое иное?
Жалоба
Напишите нам, и мы в срочном порядке примем меры.