Неизвестен Автор - Курс общей астрономии Страница 18

Тут можно читать бесплатно Неизвестен Автор - Курс общей астрономии. Жанр: Домоводство, Дом и семья / Прочее домоводство, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Неизвестен Автор - Курс общей астрономии

Неизвестен Автор - Курс общей астрономии краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Неизвестен Автор - Курс общей астрономии» бесплатно полную версию:

Неизвестен Автор - Курс общей астрономии читать онлайн бесплатно

Неизвестен Автор - Курс общей астрономии - читать книгу онлайн бесплатно, автор неизвестен Автор

Хотя зависимость ne от высоты является непрерывной, исторически сложилось условное деление ионосферы на "слои". О слоях D и F мы уже говорили. Между слоями D и F находится еще один слой Е (днем ne " 105 см -3). Он получается в результате ионизации О2 на высоте около 100 км. Представление о ионосферных слоях с резкими границами возникло в результате зондирования радиоволнами. Теперь мы знаем, что границы слоев - это просто небольшие неоднородности в распределении электронной плотности по высоте, вызывающие отражение радиоволн. При рекомбинации ионов и электронов (а также атомов в молекулы) часто получаются возбужденные атомы и молекулы, которые дают слабое излучение, наблюдаемое ночью (или днем с больших высот) как свечение неба. К свечению приводят также некоторые химические реакции в верхней атмосфере. Свечение ночного неба ограничивает минимальную яркость космических объектов, которые можно наблюдать с Земли. Звездная величина яркости ночного неба составляет 4m с квадратного градуса или 22m с квадратной секунды. Поскольку радиус нормального диска дрожания звезды равен около 1", нетрудно подсчитать, что звезды, на одну-две величины слабее 22m, будут "забиваться" фоном свечения ночного неба. Спектр свечения ночного неба довольно сложен. Он содержит непрерывную эмиссию, на которую накладывается большое число линий излучения. Одна из самых ярких линий - зеленая l 5577 Å, другая - красная l 6300 Å. Обе линии принадлежат атомарному кислороду и являются запрещенными. Начиная примерно с 6000 Å и до 4 мк простирается серия сильных полос излучения молекулы свободного гидроксила ОН. Днем свечение верхней атмосферы наблюдалось с ракет. Установлено, что днем оно гораздо сильнее, чем ночью. При наблюдениях с поверхности Земли яркость дневного неба примерно в 107 раз больше, чем ночного. Эта яркость обусловлена рассеянием солнечного света в нижних слоях атмосферы. Рассеяние производится молекулами газа (рэлеевское рассеяние) и аэрозолями, т.е. твердыми и жидкими частицами, размерами в несколько микрон. Они достаточно малы, чтобы долго удерживаться во взвешенном состоянии в атмосфере, но достаточно велики, чтобы сильно рассеивать солнечный свет. Когда Солнце заходит за горизонт, наступают сумерки, при которых солнечные лучи освещают атмосферу, начиная лишь с определенной высоты (см. рис. 21). Чем глубже погружение Солнца под горизонт, тем больше эта высота и тем меньше яркость неба. При погружении Солнца на 18° рассеяние солнечного света атмосферой перестает быть заметным совсем, и яркость неба определяется только излучением верхней атмосферы. Рэлеевское рассеяние резко усиливается с уменьшением длины волны, так как яркость рассеянного света пропорциональна l -4. Этим объясняется голубой цвет дневного неба. Если в нижней атмосфере много аэрозолей, небо становится белесоватым, так как их рассеивающая способность слабее зависит от длины волны.

§ 131. Магнитное поле Земли, полярные сияния и радиационные пояса. Связь солнечных и земных явлений

Магнитное поле Земли, отклоняющее стрелку компаса, сыграло в свое время большую роль в развитии мореплавания, так как компас позволял морякам ориентироваться в любую погоду. Свободно подвешенная стрелка компаса указывает, однако, не точно на север, а на северный магнитный полюс: она стремится стать параллельно силовым линиям магнитного поля. Угол между направлением стрелки компаса и истинным направлением на север называется магнитным склонением, угол между силовой линией и горизонтальной плоскостью - наклонением. Наибольшее наклонение наблюдается на магнитных полюсах Земли (90°). Положения магнитных полюсов меняются со временем. Установлено, что северный магнитный полюс дрейфует со скоростью 5-6 км в год. Магнитные силовые линии Земли в среднем близки к силовым линиям некоторого диполя, отличаясь от них местными нерегулярностями, связанными с наличием намагниченных пород в коре. Этот воображаемый диполь, поле которого ближе всего соответствует истинному, называется эквивалентным магнитным диполем. Ось эквивалентного диполя называется геомагнитной. Точки пересечения геомагнитной оси с поверхностью Земли геомагнитные полюсы - не совпадают с магнитными полюсами, так как поле эквивалентного диполя не вполне точно совпадает с полем Земли. Аналогично географическим координатам можно ввести геомагнитную широту и долготу. Система геомагнитных координат часто применяется в исследованиях различных явлений, связанных с магнитным полем Земли: полярных сияний, магнитных бурь и т.д. (см. ниже). Положение геомагнитных полюсов со временем практически не меняется. Географические координаты северного геомагнитного полюса ср = 78°,6 с.ш. и l = 70°,1 з.д. (Северная Гренландия). Напряженность ноля на геомагнитных полюсах достигает 0,63 э (эрстед), а на геомагнитном экваторе 0,31 э. Искусственные спутники Земли и космические ракеты позволили измерить магнитное поле Земли на больших расстояниях. На рис. 152 показана зависимость напряженности поля от расстояния, найденная по измерениям на советских космических ракетах. Вдали от поверхности неоднородности поля сглаживаются, и оно становится очень близким к полю эквивалентного диполя. Магнитное поле Земли испытывает вековые изменения. Скорость и характер изменения различны в различных географических точках. Большой интерес представляет в связи с этими изменениями явление палеомагнетизма. Оно состоит в том, что при охлаждении и застывании лавы (а также и в ряде других случаев, например, при отжиге кирпича, осаждении глины на дне озер) материал сохраняет слабую намагниченность, причем направление поля остается таким же, как при формировании материала. Изучая в лаборатории магнитные свойства таких образцов, можно установить картину магнитного поля в древние эпохи. Применение этого метода привело к очень интересным выводам, которые, правда, еще не являются окончательными. Например, было найдено, что магнитное поле Земли в прошлом изменяло знак. Другой вывод указывает на дрейф континентов, которые в прошлом испытывали смещения и повороты.

Происхождение магнитного поля Земли и других планет связано, по-видимому, с так называемым динамо-механизмом. Предполагается, что магнитное поле возникает благодаря гидродинамическим движениям в жидком ядре. Температура вещества в жидком ядре довольно высокая (несколько тысяч градусов), и оно имеет заметную проводимость. Если в ядре имеется какое-либо (пусть вначале очень слабое) начальное магнитное поле, то при пересечении этого поля потоком проводящего вещества возникает электрический ток. Электрический ток создает магнитное поле, которое при благоприятной геометрии течений может усилить начальное поле, а это усилит ток. Процесс усиления будет продолжаться до тех пор, пока растущие с увеличением тока потери на джоулево тепло не уравновесят притоки энергии, поступающей за счет гидродинамических движений. Магнитное поле Земли оказывает сильное влияние на электрические частицы, движущиеся в межпланетном пространстве около Земли. Эти частицы можно разбить на две группы: космические лучи, т.е. электроны, протоны и ядра тяжелых элементов приходящие с почти световыми скоростями, главным образом из других частей Галактики, и корпускулярные потоки - электрические частицы, выброшенные Солнцем. В магнитном поле электрические частицы движутся по спирали; траектория частицы как бы навивается на цилиндр, по оси которого проходит силовая линия. Радиус этого воображаемого цилиндра зависит от напряженности поля и энергии частицы. Чем больше энергия частицы, тем при данной напряженности поля радиус (он называется ларморовским) больше. Если ларморовский радиус много меньше, чем радиус Земли, частица не достигает ее поверхности. Она захватывается магнитным полем Земли Если ларморовский радиус много больше, чем радиус Земли, частица движется так, как будто бы магнитного поля нет Расчет показывает, что частицы проникают сквозь магнитное поле Земли в экваториальных районах, если их энергия больше 109 эв. Такие частицы вторгаются в атмосферу и вызывают при столкновении с ее атомами ядерные превращения, которые дают определенные количества вторичных космических лучей Эти вторичные космические лучи уже регистрируются на поверхности Земли. Для исследования космических лучей в их первоначальной форме (первичных космических лучей) аппаратуру поднимают на ракетах и искусственных спутниках Земли. Примерно 99% энергичных частиц, "пробивающих" магнитный экран Земли, являются космическими лучами галактического происхождения и лишь около 1% образуется на Солнце. В 1958 г., когда аппаратура для исследования космических лучей (счетчики Гейгера и сцинтилляционные счетчики) была впервые запущена на искусственных спутниках Земли, советские и американские исследователи столкнулись с неожиданным явлением: приборы указывали на огромную плотность энергичных частиц в ближайших окрестностях Земли. Это явление было понято не сразу и в последующие годы интенсивно исследовалось. Было установлено, что магнитное поле Земли удерживает огромное число энергичных частиц, как электронов, так и протонов. Их энергия и концентрация зависят от расстояния до Земли и геомагнитной широты. Частицы заполняют как бы огромные кольца или пояса, охватывающие Землю вокруг геомагнитного экватора. Обнаружены два основных радиационных пояса. Внутренний пояс состоит из протонов с энергией около 108эв и электронов с энергией 20-500 кэв. Он начинается на высоте 2400 и кончается на высоте 5600 км и расположен между широтами ±30. Внешний пояс радиации расположен па высотах от 12 000 до 20 000 км и состоит из протонов и электронов меньшей энергии. Понятие поясов в достаточной мере условно, их границы и размеры зависят от того, какие именно частицы и с какими энергиями принимаются в расчет при анализе измерений. На высоте 50 000-60 000 км расположен третий пояс радиации или кольцевой ток, силой до 107 а, состоящий из электронов с энергией 200 эв. Всю область околоземного пространства, заполненную заряженными частицами, движущимися в магнитное поле Земли, называют магнитосферой (рис. 153). Она отделена от межпланетного пространства магнитопаузой. Вдоль магнитопаузы частицы корпускулярных потоков ("солнечного ветра") обтекают магнитосферу.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.